|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Chronoboros-33B-GPTQ") |
|
model = AutoModelForCausalLM.from_pretrained("TheBloke/Chronoboros-33B-GPTQ", device_map="auto") |
|
model.eval() |
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): |
|
|
|
prompt = f"{system_message}\n" |
|
for user_text, assistant_text in history: |
|
if user_text: |
|
prompt += f"User: {user_text}\n" |
|
if assistant_text: |
|
prompt += f"Assistant: {assistant_text}\n" |
|
prompt += f"User: {message}\nAssistant: " |
|
|
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
output_ids = model.generate( |
|
input_ids, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
) |
|
|
|
|
|
new_tokens = output_ids[0][input_ids.shape[1]:] |
|
|
|
|
|
chunk_size = 5 |
|
for i in range(0, new_tokens.shape[0], chunk_size): |
|
current_response = tokenizer.decode(new_tokens[: i + chunk_size], skip_special_tokens=True) |
|
yield current_response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|