|
import gradio as gr |
|
import spaces |
|
from transformers import pipeline |
|
|
|
|
|
|
|
pipe = pipeline("text-generation", model="TheBloke/Chronoboros-33B-GPTQ", device=0) |
|
|
|
@spaces.GPU |
|
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): |
|
|
|
prompt = f"{system_message}\n" |
|
for user_text, assistant_text in history: |
|
if user_text: |
|
prompt += f"User: {user_text}\n" |
|
if assistant_text: |
|
prompt += f"Assistant: {assistant_text}\n" |
|
prompt += f"User: {message}\nAssistant: " |
|
|
|
|
|
|
|
output = pipe(prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p) |
|
full_text = output[0]["generated_text"] |
|
|
|
|
|
response_text = full_text[len(prompt):] |
|
|
|
|
|
chunk_size = 5 |
|
for i in range(0, len(response_text), chunk_size): |
|
yield response_text[: i + chunk_size] |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|