lunarflu HF staff commited on
Commit
49583f4
·
verified ·
1 Parent(s): 5a08b88

test use chronoboros instead

Browse files
Files changed (1) hide show
  1. app.py +30 -41
app.py CHANGED
@@ -1,48 +1,38 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
38
 
39
- response += token
40
- yield response
 
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
@@ -59,6 +49,5 @@ demo = gr.ChatInterface(
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ # Load the model and tokenizer (you may need to adjust device_map or other settings depending on your hardware)
5
+ tokenizer = AutoTokenizer.from_pretrained("TheBloke/Chronoboros-33B-GPTQ")
6
+ model = AutoModelForCausalLM.from_pretrained("TheBloke/Chronoboros-33B-GPTQ", device_map="auto")
7
+
8
+ def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
9
+ # Build the prompt using conversation history
10
+ prompt = f"{system_message}\n"
11
+ for user_text, assistant_text in history:
12
+ if user_text:
13
+ prompt += f"User: {user_text}\n"
14
+ if assistant_text:
15
+ prompt += f"Assistant: {assistant_text}\n"
16
+ prompt += f"User: {message}\nAssistant: "
17
+
18
+ # Tokenize the prompt and generate a response
19
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
20
+ output_ids = model.generate(
21
+ input_ids,
22
+ max_new_tokens=max_tokens,
 
 
 
 
 
 
 
 
 
 
 
23
  temperature=temperature,
24
  top_p=top_p,
25
+ do_sample=True, # enable sampling for varied responses
26
+ )
27
+ # Get only the newly generated tokens (after the prompt)
28
+ new_tokens = output_ids[0][input_ids.shape[1]:]
29
 
30
+ # Simulate streaming by yielding partial responses token by token
31
+ for i in range(new_tokens.shape[0]):
32
+ current_response = tokenizer.decode(new_tokens[: i + 1], skip_special_tokens=True)
33
+ yield current_response
34
 
35
+ # Configure the ChatInterface with additional inputs
 
 
 
36
  demo = gr.ChatInterface(
37
  respond,
38
  additional_inputs=[
 
49
  ],
50
  )
51
 
 
52
  if __name__ == "__main__":
53
  demo.launch()