test use chronoboros instead
Browse files
app.py
CHANGED
@@ -1,48 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
@@ -59,6 +49,5 @@ demo = gr.ChatInterface(
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Load the model and tokenizer (you may need to adjust device_map or other settings depending on your hardware)
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Chronoboros-33B-GPTQ")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("TheBloke/Chronoboros-33B-GPTQ", device_map="auto")
|
7 |
+
|
8 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
9 |
+
# Build the prompt using conversation history
|
10 |
+
prompt = f"{system_message}\n"
|
11 |
+
for user_text, assistant_text in history:
|
12 |
+
if user_text:
|
13 |
+
prompt += f"User: {user_text}\n"
|
14 |
+
if assistant_text:
|
15 |
+
prompt += f"Assistant: {assistant_text}\n"
|
16 |
+
prompt += f"User: {message}\nAssistant: "
|
17 |
+
|
18 |
+
# Tokenize the prompt and generate a response
|
19 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
20 |
+
output_ids = model.generate(
|
21 |
+
input_ids,
|
22 |
+
max_new_tokens=max_tokens,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
temperature=temperature,
|
24 |
top_p=top_p,
|
25 |
+
do_sample=True, # enable sampling for varied responses
|
26 |
+
)
|
27 |
+
# Get only the newly generated tokens (after the prompt)
|
28 |
+
new_tokens = output_ids[0][input_ids.shape[1]:]
|
29 |
|
30 |
+
# Simulate streaming by yielding partial responses token by token
|
31 |
+
for i in range(new_tokens.shape[0]):
|
32 |
+
current_response = tokenizer.decode(new_tokens[: i + 1], skip_special_tokens=True)
|
33 |
+
yield current_response
|
34 |
|
35 |
+
# Configure the ChatInterface with additional inputs
|
|
|
|
|
|
|
36 |
demo = gr.ChatInterface(
|
37 |
respond,
|
38 |
additional_inputs=[
|
|
|
49 |
],
|
50 |
)
|
51 |
|
|
|
52 |
if __name__ == "__main__":
|
53 |
demo.launch()
|