Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,11 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
6 |
# Load the model and tokenizer
|
7 |
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Chronoboros-33B-GPTQ")
|
8 |
model = AutoModelForCausalLM.from_pretrained("TheBloke/Chronoboros-33B-GPTQ", device_map="auto")
|
9 |
-
model.eval() # set model to evaluation mode
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
13 |
|
14 |
@spaces.GPU
|
15 |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
@@ -33,12 +34,13 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
|
|
33 |
temperature=temperature,
|
34 |
top_p=top_p,
|
35 |
do_sample=True,
|
|
|
36 |
)
|
37 |
|
38 |
-
# Extract the new tokens
|
39 |
new_tokens = output_ids[0][input_ids.shape[1]:]
|
40 |
|
41 |
-
# Stream output in chunks (
|
42 |
chunk_size = 5
|
43 |
for i in range(0, new_tokens.shape[0], chunk_size):
|
44 |
current_response = tokenizer.decode(new_tokens[: i + chunk_size], skip_special_tokens=True)
|
|
|
6 |
# Load the model and tokenizer
|
7 |
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Chronoboros-33B-GPTQ")
|
8 |
model = AutoModelForCausalLM.from_pretrained("TheBloke/Chronoboros-33B-GPTQ", device_map="auto")
|
|
|
9 |
|
10 |
+
# Set a valid pad_token_id to avoid generation errors
|
11 |
+
model.generation_config.pad_token_id = tokenizer.eos_token_id
|
12 |
+
|
13 |
+
model.eval() # Ensure the model is in evaluation mode
|
14 |
|
15 |
@spaces.GPU
|
16 |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
|
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
do_sample=True,
|
37 |
+
pad_token_id=tokenizer.eos_token_id, # also pass it here to be safe
|
38 |
)
|
39 |
|
40 |
+
# Extract the new tokens (tokens generated after the prompt)
|
41 |
new_tokens = output_ids[0][input_ids.shape[1]:]
|
42 |
|
43 |
+
# Stream output in chunks (here yielding every 5 tokens)
|
44 |
chunk_size = 5
|
45 |
for i in range(0, new_tokens.shape[0], chunk_size):
|
46 |
current_response = tokenizer.decode(new_tokens[: i + chunk_size], skip_special_tokens=True)
|