import gradio as gr import spaces import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("TheBloke/Chronoboros-33B-GPTQ") model = AutoModelForCausalLM.from_pretrained("TheBloke/Chronoboros-33B-GPTQ", device_map="auto") # Set a valid pad_token_id to avoid generation errors model.generation_config.pad_token_id = tokenizer.eos_token_id model.eval() # Ensure the model is in evaluation mode @spaces.GPU def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): # Build the prompt using conversation history prompt = f"{system_message}\n" for user_text, assistant_text in history: if user_text: prompt += f"User: {user_text}\n" if assistant_text: prompt += f"Assistant: {assistant_text}\n" prompt += f"User: {message}\nAssistant: " # Tokenize the prompt input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) # Generate the response with no gradients with torch.no_grad(): output_ids = model.generate( input_ids, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id, # also pass it here to be safe ) # Extract the new tokens (tokens generated after the prompt) new_tokens = output_ids[0][input_ids.shape[1]:] # Stream output in chunks (here yielding every 5 tokens) chunk_size = 5 for i in range(0, new_tokens.shape[0], chunk_size): current_response = tokenizer.decode(new_tokens[: i + chunk_size], skip_special_tokens=True) yield current_response # Configure the ChatInterface with additional inputs demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()