|
import json |
|
import os |
|
import re |
|
from collections import defaultdict |
|
from datetime import datetime, timedelta, timezone |
|
|
|
import huggingface_hub |
|
from huggingface_hub import ModelCard |
|
from huggingface_hub.hf_api import ModelInfo |
|
from transformers import AutoConfig |
|
from transformers.models.auto.tokenization_auto import tokenizer_class_from_name, get_tokenizer_config |
|
|
|
from src.envs import HAS_HIGHER_RATE_LIMIT |
|
|
|
|
|
|
|
|
|
def check_model_card(repo_id: str) -> tuple[bool, str]: |
|
|
|
try: |
|
card = ModelCard.load(repo_id) |
|
except huggingface_hub.utils.EntryNotFoundError: |
|
return False, "Please add a model card to your model to explain how you trained/fine-tuned it." |
|
|
|
|
|
if card.data.license is None: |
|
if not ("license_name" in card.data and "license_link" in card.data): |
|
return False, ( |
|
"License not found. Please add a license to your model card using the `license` metadata or a" |
|
" `license_name`/`license_link` pair." |
|
) |
|
|
|
|
|
if len(card.text) < 200: |
|
return False, "Please add a description to your model card, it is too short." |
|
|
|
return True, "" |
|
|
|
|
|
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]: |
|
try: |
|
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) |
|
if test_tokenizer: |
|
tokenizer_config = get_tokenizer_config(model_name) |
|
if tokenizer_config is not None: |
|
tokenizer_class_candidate = tokenizer_config.get("tokenizer_class", None) |
|
else: |
|
tokenizer_class_candidate = config.tokenizer_class |
|
|
|
|
|
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) |
|
if tokenizer_class is None: |
|
return ( |
|
False, |
|
f"uses {tokenizer_class_candidate}, which is not in a transformers release, therefore not supported at the moment.", |
|
None |
|
) |
|
return True, None, config |
|
|
|
except ValueError: |
|
return ( |
|
False, |
|
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", |
|
None |
|
) |
|
|
|
except Exception as e: |
|
return False, "was not found on hub!", None |
|
|
|
|
|
def get_model_size(model_info: ModelInfo, precision: str): |
|
size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)") |
|
try: |
|
model_size = round(model_info.safetensors["total"] / 1e9, 3) |
|
except (AttributeError, TypeError ): |
|
try: |
|
size_match = re.search(size_pattern, model_info.modelId.lower()) |
|
model_size = size_match.group(0) |
|
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3) |
|
except AttributeError: |
|
return 0 |
|
|
|
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 |
|
model_size = size_factor * model_size |
|
return model_size |
|
|
|
def get_model_arch(model_info: ModelInfo): |
|
return model_info.config.get("architectures", "Unknown") |
|
|
|
def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota): |
|
if org_or_user not in users_to_submission_dates: |
|
return True, "" |
|
submission_dates = sorted(users_to_submission_dates[org_or_user]) |
|
|
|
time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ") |
|
submissions_after_timelimit = [d for d in submission_dates if d > time_limit] |
|
|
|
num_models_submitted_in_period = len(submissions_after_timelimit) |
|
if org_or_user in HAS_HIGHER_RATE_LIMIT: |
|
rate_limit_quota = 2 * rate_limit_quota |
|
|
|
if num_models_submitted_in_period > rate_limit_quota: |
|
error_msg = f"Organisation or user `{org_or_user}`" |
|
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard " |
|
error_msg += f"in the last {rate_limit_period} days.\n" |
|
error_msg += ( |
|
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗" |
|
) |
|
return False, error_msg |
|
return True, "" |
|
|
|
|
|
def already_submitted_models(requested_models_dir: str) -> set[str]: |
|
depth = 1 |
|
file_names = [] |
|
users_to_submission_dates = defaultdict(list) |
|
|
|
for root, _, files in os.walk(requested_models_dir): |
|
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) |
|
if current_depth == depth: |
|
for file in files: |
|
if not file.endswith(".json"): |
|
continue |
|
with open(os.path.join(root, file), "r") as f: |
|
info = json.load(f) |
|
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}") |
|
|
|
|
|
if info["model"].count("/") == 0 or "submitted_time" not in info: |
|
continue |
|
organisation, _ = info["model"].split("/") |
|
users_to_submission_dates[organisation].append(info["submitted_time"]) |
|
|
|
return set(file_names), users_to_submission_dates |
|
|