File size: 9,080 Bytes
b4171e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import streamlit as st
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import pandas as pd
from spacy import displacy

###########################
# Utility Function for Cleanup
###########################
def clean_and_group_entities(ner_results, min_score=0.40):
    """
    Combines tokens for the same entity and filters out entities below the score threshold.
    """
    grouped_entities = []
    current_entity = None

    for result in ner_results:
        # Skip entities with a score below threshold
        if result["score"] < min_score:
            if current_entity:
                # If the current entity meets threshold, add it
                if current_entity["score"] >= min_score:
                    grouped_entities.append(current_entity)
                current_entity = None
            continue

        # Remove any subword prefix "##"
        word = result["word"].replace("##", "")  

        # Check if this result continues the current entity
        if (current_entity 
            and result["entity_group"] == current_entity["entity_group"] 
            and result["start"] == current_entity["end"]):
            
            # Update the current entity
            current_entity["word"] += word
            current_entity["end"] = result["end"]
            # Keep the minimum score as the "weakest link"
            current_entity["score"] = min(current_entity["score"], result["score"])
            
            # If combined score now drops below threshold, discard the entity
            if current_entity["score"] < min_score:
                current_entity = None
        else:
            # Finalize the previous entity if valid
            if current_entity and current_entity["score"] >= min_score:
                grouped_entities.append(current_entity)
            
            # Start a new entity
            current_entity = {
                "entity_group": result["entity_group"],
                "word": word,
                "start": result["start"],
                "end": result["end"],
                "score": result["score"]
            }

    # Add the last entity if it meets threshold
    if current_entity and current_entity["score"] >= min_score:
        grouped_entities.append(current_entity)

    return grouped_entities

###########################
# Constants and Setup
###########################
MODELS = {
    "ModernBERT Base": "disham993/electrical-ner-modernbert-base",
    "BERT Base": "disham993/electrical-ner-bert-base",
    "ModernBERT Large": "disham993/electrical-ner-modernbert-large",
    "BERT Large": "disham993/electrical-ner-bert-large",
    "DistilBERT Base": "disham993/electrical-ner-distilbert-base"
}

ENTITY_COLORS = {
    "COMPONENT": "#FFB6C1",
    "DESIGN_PARAM": "#98FB98",
    "MATERIAL": "#DDA0DD",
    "EQUIPMENT": "#87CEEB",
    "TECHNOLOGY": "#F0E68C",
    "SOFTWARE": "#FFD700",
    "STANDARD": "#FFA07A",
    "VENDOR": "#E6E6FA",
    "PRODUCT": "#98FF98"
}

EXAMPLES = [
    "Texas Instruments LM358 op-amp requires dual power supply.",
    "Using a Multimeter, the technician measured the 10 kΞ© resistance of a Copper wire in the circuit.",
    "To improve the reliability of the circuit, the engineer tested a 10k Ohm resistor with a multimeter from Fluke.",
    "During the circuit design, we measured the current flow using a Fluke multimeter to ensure it was within the 10A specification."
]

@st.cache_resource
def load_model(model_name):
    """
    Load and return a token classification pipeline with an aggregation strategy of 'simple'.
    """
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForTokenClassification.from_pretrained(model_name)
        return pipeline(
            "ner",
            model=model,
            tokenizer=tokenizer,
            aggregation_strategy="simple"  # <-- Aggregation strategy
        )
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        return None

def get_base_entity_type(entity_label):
    """
    Strips off 'B-' or 'I-' prefix if present.
    """
    if entity_label.startswith("B-") or entity_label.startswith("I-"):
        return entity_label[2:]
    return entity_label

def create_displacy_data(text, entities):
    """
    Create data for spaCy's displacy visualizer.
    """
    ents = []
    for entity in entities:
        base_type = get_base_entity_type(entity["entity_group"])
        ents.append({
            "start": entity["start"],
            "end": entity["end"],
            "label": base_type
        })
    
    colors = {entity_type: color for entity_type, color in ENTITY_COLORS.items()}
    options = {"ents": list(ENTITY_COLORS.keys()), "colors": colors}
    
    doc_data = {
        "text": text,
        "ents": ents,
        "title": None
    }
    
    # Render with manual mode = True
    html_content = displacy.render(doc_data, style="ent", options=options, manual=True)
    return html_content

###########################
# Main Streamlit App
###########################
def main():
    st.set_page_config(page_title="Electrical Engineering NER", page_icon="⚑", layout="wide")
    
    st.title("⚑ Electrical Engineering Named Entity Recognition")
    st.markdown("""
    This application identifies technical entities in electrical engineering text using a fine-tuned BERT model.
    It can recognize components, parameters, materials, equipment, and more.
    """)
    
    # Sidebar - Model Selection
    st.sidebar.title("Model Configuration")
    selected_model_name = st.sidebar.selectbox(
        "Select Model",
        list(MODELS.keys()),
        help="Choose which model to use for entity recognition"
    )
    
    with st.sidebar.expander("Model Details"):
        st.write(f"**Model Path:** {MODELS[selected_model_name]}")
        st.write("This model is fine-tuned specifically for the electrical engineering domain.")

    # Confidence threshold
    score_threshold = st.sidebar.slider(
        'Minimum confidence threshold',
        min_value=0.0,
        max_value=1.0,
        value=0.40,
        step=0.01
    )

    # Load selected model
    model = load_model(MODELS[selected_model_name])
    
    if model is None:
        st.error("Failed to load model. Please try selecting a different model.")
        return
    
    # Create a form to collect user text and an Analyze button
    with st.form(key="text_form"):
        st.subheader("Try an example or enter your own text")
        example_idx = st.selectbox(
            "Select an example:", 
            range(len(EXAMPLES)), 
            format_func=lambda x: EXAMPLES[x][:100] + "..."
        )
        
        text_input = st.text_area(
            "Enter text for analysis:",
            value=EXAMPLES[example_idx],
            height=100
        )
        
        # This button triggers form submission
        submit_button = st.form_submit_button(label="Analyze")

    # Only run inference after the user clicks "Analyze"
    if submit_button and text_input.strip():
        with st.spinner("Analyzing text..."):
            try:
                raw_entities = model(text_input)
                cleaned_entities = clean_and_group_entities(raw_entities, min_score=score_threshold)
                
                # Visualization
                st.subheader("Identified Entities")
                html_content = create_displacy_data(text_input, cleaned_entities)
                st.markdown(html_content, unsafe_allow_html=True)
                
                # Create DataFrame
                if cleaned_entities:
                    df = pd.DataFrame(cleaned_entities).round({"score": 3})
                    
                    df = df.rename(columns={
                        "entity_group": "Entity Type",
                        "word": "Text",
                        "score": "Confidence",
                        "start": "Start",
                        "end": "End"
                    })
                    
                    st.subheader("Entity Details")
                    st.dataframe(df)
                    
                    st.subheader("Entity Distribution")
                    entity_counts = df["Entity Type"].value_counts()
                    st.bar_chart(entity_counts)
                else:
                    st.info("No entities detected in the text (or all below threshold).")
                    
            except Exception as e:
                st.error(f"Error processing text: {str(e)}")
    
    # Entity type legend
    st.sidebar.title("Entity Types")
    st.sidebar.markdown("""
    - πŸ”§ **COMPONENT**: Circuit elements
    - πŸ“Š **DESIGN_PARAM**: Values, measurements
    - 🧱 **MATERIAL**: Physical materials
    - πŸ”Œ **EQUIPMENT**: Testing equipment
    - πŸ’» **TECHNOLOGY**: Tech implementations
    - πŸ’Ύ **SOFTWARE**: Software tools
    - πŸ“œ **STANDARD**: Technical standards
    - 🏒 **VENDOR**: Manufacturers
    - πŸ“¦ **PRODUCT**: Specific products
    """)

if __name__ == "__main__":
    main()