Spaces:
Running
Running
File size: 2,601 Bytes
0f87068 2467ab2 d5bfcd1 2467ab2 0f87068 2467ab2 3358017 2467ab2 3e82d9d 2467ab2 d5bfcd1 2467ab2 afdd9d7 2467ab2 3e82d9d 2467ab2 121fc83 2467ab2 121fc83 2467ab2 56b6f69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import json
import random
import torch
import os
from distributed_training.data.dataset import DataLoader
from huggingface_hub import list_repo_refs
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
test_indices_length = 1000
models = ["distributed/optimized-gpt2-250m", "distributed/optimized-gpt2-250m-v0.1.3", "distributed/optimized-gpt2-250m-v0.1.1", "distributed/gpt2-94m"]
if os.path.exists("results.json"):
with open('results.json', 'r') as file:
results = json.load(file)
else:
results = {}
for model_name in models:
if (model_name not in results.keys()):
results[model_name] = {}
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
refs = list_repo_refs(model_name, repo_type="model")
global_epoch = max([int(tag.name) for tag in refs.tags]) if refs.tags else None
for epoch in range(0,global_epoch, 1):
if str(epoch) in results[model_name]['main-net'].keys():
continue
model = AutoModelForCausalLM.from_pretrained(model_name, revision=str(epoch), trust_remote_code=True)
model = model.to(device)
search_start = random.choice(
range(
DataLoader.max_pages
- test_indices_length
+ 1
)
)
group = [
i
for i in range(
search_start, search_start + test_indices_length
)
]
dataloader = DataLoader(
batch_size=1,
sequence_length=1024,
rows=group,
)
total_loss = 0
index = 0
# Train data for one epoch
for index, batch in enumerate(dataloader):
inputs = batch[0].to(device)
labels = batch[1].to(device)
if (len(inputs[0]) != len(labels[0])):
breakpoint()
if "optimized" in model_name:
outputs = model(input_ids=inputs, labels=labels)
loss = outputs[1]
else:
outputs = model(input_ids=inputs, labels=inputs)
loss = outputs.loss
# Accumulate Total Loss
total_loss += loss.detach().item()
# Backward Pass
model.zero_grad()
average_loss = total_loss / (index+1)
results[model_name]['main-net'][str(epoch)] = [average_loss]
print(f"Epoch: {epoch} Average Loss: {average_loss:.2f}")
with open("results.json", "w") as outfile:
json.dump(results, outfile, indent = 4) |