Spaces:
Build error
Build error
import streamlit as st | |
from langchain.chains import ConversationChain | |
from langchain.chains.conversation.memory import ConversationEntityMemory | |
from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE | |
from model import get_llm | |
st.set_page_config(page_title='Bihar Now & Then', layout='wide') | |
if "generated" not in st.session_state: | |
st.session_state["generated"] = [] | |
if "past" not in st.session_state: | |
st.session_state["past"] = [] | |
if "input" not in st.session_state: | |
st.session_state["input"] = "" | |
if "stored_session" not in st.session_state: | |
st.session_state["stored_session"] = [] | |
def get_text(): | |
input_text = st.text_input("You: ", st.session_state["input"], key="input", | |
placeholder="Ask me anything related to Bihar ...", | |
label_visibility='hidden') | |
return input_text | |
# Define function to start a new chat | |
def new_chat(): | |
""" | |
Clears session state and starts a new chat. | |
""" | |
save = [] | |
for i in range(len(st.session_state['generated'])-1, -1, -1): | |
save.append("User:" + st.session_state["past"][i]) | |
save.append("Bot:" + st.session_state["generated"][i]) | |
st.session_state["stored_session"].append(save) | |
st.session_state["generated"] = [] | |
st.session_state["past"] = [] | |
st.session_state["input"] = "" | |
st.session_state.entity_memory.entity_store = {} | |
st.session_state.entity_memory.buffer.clear() | |
# Set up sidebar with various options | |
with st.sidebar.expander("π οΈ ", expanded=False): | |
# Option to preview memory store | |
if st.checkbox("Preview memory store"): | |
with st.expander("Memory-Store", expanded=False): | |
st.session_state.entity_memory.store | |
# Option to preview memory buffer | |
if st.checkbox("Preview memory buffer"): | |
with st.expander("Bufffer-Store", expanded=False): | |
st.session_state.entity_memory.buffer | |
MODEL = st.selectbox(label='Model', options=['gpt-3.5-turbo','text-davinci-003','text-davinci-002','code-davinci-002']) | |
K = st.number_input(' (#)Summary of prompts to consider',min_value=3,max_value=1000) | |
# Set up the Streamlit app layout | |
st.subheader(" Powered by π¦ LangChain + π€ HuggingFace + Streamlit") | |
model_name = "bert-large-uncased" | |
pinecone_index = "bert-large-uncased" | |
llm = "databricks/dolly-v2-3b" | |
llm_chain, docsearch = get_llm(model_name,pinecone_index,llm) | |
# Create a ConversationEntityMemory object if not already created | |
if 'entity_memory' not in st.session_state: | |
st.session_state.entity_memory = ConversationEntityMemory(llm=llm, k=K ) | |
# Create the ConversationChain object with the specified configuration | |
Conversation = ConversationChain( | |
llm=llm, | |
prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE, | |
memory=st.session_state.entity_memory | |
) | |
st.sidebar.button("New Chat", on_click = new_chat, type='primary') | |
user_input = get_text() | |
if user_input: | |
output = Conversation.run(input=user_input) | |
st.session_state.past.append(user_input) | |
st.session_state.generated.append(output) | |
# Allow to download as well | |
download_str = [] | |
with st.expander("Conversation", expanded=True): | |
for i in range(len(st.session_state['generated'])-1, -1, -1): | |
st.info(st.session_state["past"][i]) | |
st.success(st.session_state["generated"][i]) | |
download_str.append(st.session_state["past"][i]) | |
download_str.append(st.session_state["generated"][i]) | |
# Can throw error - requires fix | |
download_str = '\n'.join(download_str) | |
if download_str: | |
st.download_button('Download',download_str) | |
# Display stored conversation sessions in the sidebar | |
for i, sublist in enumerate(st.session_state.stored_session): | |
with st.sidebar.expander(label= f"Conversation-Session:{i}"): | |
st.write(sublist) | |
# Allow the user to clear all stored conversation sessions | |
if st.session_state.stored_session: | |
if st.sidebar.checkbox("Clear-all"): | |
del st.session_state.stored_session |