Spaces:
Build error
Build error
divyanshusingh
commited on
Commit
·
26175df
1
Parent(s):
7c627e9
Added: model.py
Browse filesAdds scripts to construct the model
model.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
load_dotenv()
|
5 |
+
try:
|
6 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
7 |
+
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
8 |
+
except:
|
9 |
+
PINECONE_API_KEY = subprocess.check_output(["bash", "-c", "echo ${{ secrets.PINECONE_API_KEY }}"]).decode("utf-8").strip()
|
10 |
+
|
11 |
+
|
12 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
+
import pinecone
|
14 |
+
import torch
|
15 |
+
from langchain import PromptTemplate, LLMChain,HuggingFacePipeline
|
16 |
+
from langchain.vectorstores import Pinecone
|
17 |
+
from langchain.chains.question_answering import load_qa_chain
|
18 |
+
from langchain.chains import RetrievalQA
|
19 |
+
from transformers import pipeline
|
20 |
+
|
21 |
+
def get_llm(model_name,pinecone_index,llm):
|
22 |
+
# model_name = "bert-large-uncased" #"t5-large"
|
23 |
+
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
24 |
+
|
25 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
26 |
+
|
27 |
+
|
28 |
+
pinecone.init(
|
29 |
+
api_key=PINECONE_API_KEY,
|
30 |
+
environment="us-east-1-aws"
|
31 |
+
)
|
32 |
+
|
33 |
+
index = pinecone.Index(pinecone_index)
|
34 |
+
print(index.describe_index_stats())
|
35 |
+
|
36 |
+
docsearch = Pinecone(index, embeddings.embed_query,"text")
|
37 |
+
|
38 |
+
# print("About to load the model")
|
39 |
+
|
40 |
+
instruct_pipeline = pipeline(model=llm, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto",
|
41 |
+
return_full_text=True, do_sample=False, max_new_tokens=128)
|
42 |
+
llm = HuggingFacePipeline(pipeline=instruct_pipeline)
|
43 |
+
# print("Loaded the LLM")
|
44 |
+
|
45 |
+
# print("Prompting")
|
46 |
+
|
47 |
+
template = """Context: {context}
|
48 |
+
|
49 |
+
Question: {question}
|
50 |
+
|
51 |
+
Answer: Let's go step by step."""
|
52 |
+
|
53 |
+
prompt = PromptTemplate(template=template, input_variables=["question","context"])
|
54 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
55 |
+
return llm_chain, docsearch
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
model_name = "bert-large-uncased"
|
60 |
+
pinecone_index = "bert-large-uncased"
|
61 |
+
llm = "databricks/dolly-v2-3b"
|
62 |
+
llm_chain, docsearch = get_llm(model_name,pinecone_index,llm)
|
63 |
+
print(":"*40)
|
64 |
+
questions = ["what is the name of the first Hindi newspaper published in Bihar?",
|
65 |
+
"what is the capital of Bihar?",
|
66 |
+
"Brief about the Gupta Dynasty"]
|
67 |
+
for question in questions:
|
68 |
+
context = docsearch.similarity_search(question, k=3,metadata=False)
|
69 |
+
content = ""
|
70 |
+
for i in context:
|
71 |
+
content= content + f"{i.__dict__['page_content']}"
|
72 |
+
print(f"{question}")
|
73 |
+
response = llm_chain.predict(question=question,context=content)
|
74 |
+
print(f"{response}\n{'--'*25}")
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|