import os import subprocess from dotenv import load_dotenv load_dotenv() try: os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN") PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") except: PINECONE_API_KEY = subprocess.check_output(["bash", "-c", "echo ${{ secrets.PINECONE_API_KEY }}"]).decode("utf-8").strip() from langchain.embeddings import HuggingFaceEmbeddings import pinecone import torch from langchain import PromptTemplate, LLMChain,HuggingFacePipeline from langchain.vectorstores import Pinecone from langchain.chains.question_answering import load_qa_chain from langchain.chains import RetrievalQA from transformers import pipeline def get_llm(model_name,pinecone_index,llm): # model_name = "bert-large-uncased" #"t5-large" model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'} embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) pinecone.init( api_key=PINECONE_API_KEY, environment="us-east-1-aws" ) index = pinecone.Index(pinecone_index) print(index.describe_index_stats()) docsearch = Pinecone(index, embeddings.embed_query,"text") # print("About to load the model") instruct_pipeline = pipeline(model=llm, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", return_full_text=True, do_sample=False, max_new_tokens=128) llm = HuggingFacePipeline(pipeline=instruct_pipeline) # print("Loaded the LLM") # print("Prompting") template = """Context: {context} Question: {question} Answer: Let's go step by step.""" prompt = PromptTemplate(template=template, input_variables=["question","context"]) llm_chain = LLMChain(prompt=prompt, llm=llm) return llm_chain, docsearch if __name__ == "__main__": model_name = "bert-large-uncased" pinecone_index = "bert-large-uncased" llm = "databricks/dolly-v2-3b" llm_chain, docsearch = get_llm(model_name,pinecone_index,llm) print(":"*40) questions = ["what is the name of the first Hindi newspaper published in Bihar?", "what is the capital of Bihar?", "Brief about the Gupta Dynasty"] for question in questions: context = docsearch.similarity_search(question, k=3,metadata=False) content = "" for i in context: content= content + f"{i.__dict__['page_content']}" print(f"{question}") response = llm_chain.predict(question=question,context=content) print(f"{response}\n{'--'*25}")