import streamlit as st from langchain.chains import ConversationChain from langchain.chains.conversation.memory import ConversationEntityMemory from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE from model import get_llm st.set_page_config(page_title='Bihar Now & Then', layout='wide') if "generated" not in st.session_state: st.session_state["generated"] = [] if "past" not in st.session_state: st.session_state["past"] = [] if "input" not in st.session_state: st.session_state["input"] = "" if "stored_session" not in st.session_state: st.session_state["stored_session"] = [] def get_text(): input_text = st.text_input("You: ", st.session_state["input"], key="input", placeholder="Ask me anything related to Bihar ...", label_visibility='hidden') return input_text # Define function to start a new chat def new_chat(): """ Clears session state and starts a new chat. """ save = [] for i in range(len(st.session_state['generated'])-1, -1, -1): save.append("User:" + st.session_state["past"][i]) save.append("Bot:" + st.session_state["generated"][i]) st.session_state["stored_session"].append(save) st.session_state["generated"] = [] st.session_state["past"] = [] st.session_state["input"] = "" st.session_state.entity_memory.entity_store = {} st.session_state.entity_memory.buffer.clear() # Set up sidebar with various options with st.sidebar.expander("🛠️ ", expanded=False): # Option to preview memory store if st.checkbox("Preview memory store"): with st.expander("Memory-Store", expanded=False): st.session_state.entity_memory.store # Option to preview memory buffer if st.checkbox("Preview memory buffer"): with st.expander("Bufffer-Store", expanded=False): st.session_state.entity_memory.buffer MODEL = st.selectbox(label='Model', options=['gpt-3.5-turbo','text-davinci-003','text-davinci-002','code-davinci-002']) K = st.number_input(' (#)Summary of prompts to consider',min_value=3,max_value=1000) # Set up the Streamlit app layout st.subheader(" Powered by 🦜 LangChain + 🤗 HuggingFace + Streamlit") model_name = "bert-large-uncased" pinecone_index = "bert-large-uncased" llm = "databricks/dolly-v2-3b" llm_chain, docsearch = get_llm(model_name,pinecone_index,llm) # Create a ConversationEntityMemory object if not already created if 'entity_memory' not in st.session_state: st.session_state.entity_memory = ConversationEntityMemory(llm=llm, k=K ) # Create the ConversationChain object with the specified configuration Conversation = ConversationChain( llm=llm, prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE, memory=st.session_state.entity_memory ) st.sidebar.button("New Chat", on_click = new_chat, type='primary') user_input = get_text() if user_input: output = Conversation.run(input=user_input) st.session_state.past.append(user_input) st.session_state.generated.append(output) # Allow to download as well download_str = [] with st.expander("Conversation", expanded=True): for i in range(len(st.session_state['generated'])-1, -1, -1): st.info(st.session_state["past"][i]) st.success(st.session_state["generated"][i]) download_str.append(st.session_state["past"][i]) download_str.append(st.session_state["generated"][i]) # Can throw error - requires fix download_str = '\n'.join(download_str) if download_str: st.download_button('Download',download_str) # Display stored conversation sessions in the sidebar for i, sublist in enumerate(st.session_state.stored_session): with st.sidebar.expander(label= f"Conversation-Session:{i}"): st.write(sublist) # Allow the user to clear all stored conversation sessions if st.session_state.stored_session: if st.sidebar.checkbox("Clear-all"): del st.session_state.stored_session