kyawhtetpaingwin111 commited on
Commit
0f36c84
·
verified ·
1 Parent(s): 0c64894

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -3
app.py CHANGED
@@ -59,8 +59,34 @@ def classify_audio(audio_file):
59
 
60
  return dict(zip(categories, map(float, probs)))
61
 
62
- audio = gr.Audio(type="filepath", label="Upload Audio <=20 seconds")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  label = gr.Label()
 
64
  # Gradio Interface
65
- inf = gr.Interface(fn=classify_audio, inputs=audio, outputs=label)
66
- inf.launch()
 
59
 
60
  return dict(zip(categories, map(float, probs)))
61
 
62
+ description = """
63
+ # Emotion Recognition from Audio
64
+
65
+ Welcome to the app that recognizes emotion from the audio!
66
+
67
+ ## Instructions:
68
+ - Upload or record audio (no more than 20 seconds for now)
69
+ - Wait for processing and prediction from the model.
70
+
71
+ ## Emotions the app recognizes:
72
+ 1) Anger
73
+ 2) Disgust
74
+ 3) Fear
75
+ 4) Happiness
76
+ 5) Pleasant Surprise
77
+ 6) Sadness
78
+ 7) Neutral
79
+
80
+ ## About:
81
+ This application is actually using a computer vision model (an adaptation of ResNet) for detection and the model
82
+ has been trained on a relatively small dataset of 2,380 recordings from two actors saying phrases in different emotions.
83
+
84
+ For more information, visit this [Github repo](https://github.com/KyawHtetWin/issem-machine-learning/tree/main/audio_emotion_detector)
85
+ """
86
+
87
+ audio = gr.Audio(type="filepath", label="Upload Audio")
88
  label = gr.Label()
89
+ md = gr.Markdown(description)
90
  # Gradio Interface
91
+ inf = gr.Interface(fn=classify_audio, inputs=audio, outputs=label, title="Emotion Recognition", description=md)
92
+ inf.launch(share=True)