Spaces:
Sleeping
Sleeping
Initial API deployment
Browse files- Dockerfile +33 -0
- api.py +134 -0
- app/scene_graph_service.py +885 -0
- download_model.py +37 -0
- requirements.txt +11 -0
Dockerfile
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
# Install system dependencies
|
6 |
+
RUN apt-get update && apt-get install -y \
|
7 |
+
build-essential \
|
8 |
+
libgl1-mesa-glx \
|
9 |
+
libglib2.0-0 \
|
10 |
+
&& rm -rf /var/lib/apt/lists/*
|
11 |
+
|
12 |
+
# Copy requirements file
|
13 |
+
COPY requirements.txt .
|
14 |
+
|
15 |
+
# Install Python dependencies
|
16 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
17 |
+
|
18 |
+
# Copy application code
|
19 |
+
COPY app/ ./app/
|
20 |
+
COPY api.py .
|
21 |
+
COPY download_model.py .
|
22 |
+
|
23 |
+
# Create necessary directories
|
24 |
+
RUN mkdir -p uploads outputs app/models
|
25 |
+
|
26 |
+
# Download model on build
|
27 |
+
RUN python download_model.py
|
28 |
+
|
29 |
+
# Expose port for the API
|
30 |
+
EXPOSE 7860
|
31 |
+
|
32 |
+
# Command to run the application
|
33 |
+
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "7860"]
|
api.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
+
import shutil
|
6 |
+
import uuid
|
7 |
+
import logging
|
8 |
+
from typing import Dict, List, Any
|
9 |
+
import json
|
10 |
+
|
11 |
+
# Import scene graph service
|
12 |
+
from app.scene_graph_service import process_image
|
13 |
+
|
14 |
+
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
# Create necessary directories
|
19 |
+
os.makedirs("uploads", exist_ok=True)
|
20 |
+
os.makedirs("outputs", exist_ok=True)
|
21 |
+
os.makedirs("app/models", exist_ok=True)
|
22 |
+
|
23 |
+
# Initialize FastAPI app
|
24 |
+
app = FastAPI(title="Scene Graph Generation API")
|
25 |
+
|
26 |
+
# Add CORS middleware
|
27 |
+
app.add_middleware(
|
28 |
+
CORSMiddleware,
|
29 |
+
allow_origins=["*"],
|
30 |
+
allow_credentials=True,
|
31 |
+
allow_methods=["*"],
|
32 |
+
allow_headers=["*"],
|
33 |
+
)
|
34 |
+
|
35 |
+
@app.get("/")
|
36 |
+
def read_root():
|
37 |
+
return {
|
38 |
+
"message": "Scene Graph Generation API is running",
|
39 |
+
"usage": "POST /generate with an image file to generate a scene graph",
|
40 |
+
"docs": "Visit /docs for API documentation"
|
41 |
+
}
|
42 |
+
|
43 |
+
@app.post("/generate")
|
44 |
+
async def generate_scene_graph(
|
45 |
+
image: UploadFile = File(...),
|
46 |
+
confidence_threshold: float = Form(0.5),
|
47 |
+
use_fixed_boxes: bool = Form(False),
|
48 |
+
) -> Dict[str, Any]:
|
49 |
+
try:
|
50 |
+
# Input validation
|
51 |
+
if not image.content_type.startswith("image/"):
|
52 |
+
raise HTTPException(
|
53 |
+
status_code=400, detail="Uploaded file must be an image"
|
54 |
+
)
|
55 |
+
|
56 |
+
if not (0 <= confidence_threshold <= 1):
|
57 |
+
raise HTTPException(
|
58 |
+
status_code=400, detail="Confidence threshold must be between 0 and 1"
|
59 |
+
)
|
60 |
+
|
61 |
+
# Generate unique ID for this job
|
62 |
+
job_id = str(uuid.uuid4())
|
63 |
+
short_id = job_id.split("-")[0]
|
64 |
+
|
65 |
+
# Create directories for this job
|
66 |
+
upload_dir = os.path.join("uploads", job_id)
|
67 |
+
output_dir = os.path.join("outputs", job_id)
|
68 |
+
os.makedirs(upload_dir, exist_ok=True)
|
69 |
+
os.makedirs(output_dir, exist_ok=True)
|
70 |
+
|
71 |
+
# Save the uploaded image
|
72 |
+
original_filename = image.filename
|
73 |
+
_, ext = os.path.splitext(original_filename)
|
74 |
+
image_filename = f"{short_id}{ext}"
|
75 |
+
image_path = os.path.join(upload_dir, image_filename)
|
76 |
+
|
77 |
+
# Save the file
|
78 |
+
with open(image_path, "wb") as buffer:
|
79 |
+
shutil.copyfileobj(image.file, buffer)
|
80 |
+
|
81 |
+
logger.info(f"Image saved to {image_path}")
|
82 |
+
|
83 |
+
# Define model paths
|
84 |
+
model_path = "app/models/model.pth"
|
85 |
+
vocabulary_path = "app/models/vocabulary.json"
|
86 |
+
|
87 |
+
# Process the image
|
88 |
+
objects, relationships, annotated_image_path, graph_path = process_image(
|
89 |
+
image_path=image_path,
|
90 |
+
model_path=model_path,
|
91 |
+
vocabulary_path=vocabulary_path,
|
92 |
+
confidence_threshold=confidence_threshold,
|
93 |
+
use_fixed_boxes=use_fixed_boxes,
|
94 |
+
output_dir=output_dir,
|
95 |
+
base_filename=short_id,
|
96 |
+
)
|
97 |
+
|
98 |
+
# Read the generated images as base64
|
99 |
+
with open(annotated_image_path, "rb") as img_file:
|
100 |
+
annotated_image_base64 = base64.b64encode(img_file.read()).decode("utf-8")
|
101 |
+
|
102 |
+
with open(graph_path, "rb") as img_file:
|
103 |
+
graph_image_base64 = base64.b64encode(img_file.read()).decode("utf-8")
|
104 |
+
|
105 |
+
# Prepare response with base64 encoded images
|
106 |
+
response = {
|
107 |
+
"objects": objects,
|
108 |
+
"relationships": relationships,
|
109 |
+
"annotated_image": annotated_image_base64,
|
110 |
+
"graph_image": graph_image_base64
|
111 |
+
}
|
112 |
+
|
113 |
+
# Clean up
|
114 |
+
try:
|
115 |
+
shutil.rmtree(upload_dir)
|
116 |
+
shutil.rmtree(output_dir)
|
117 |
+
except Exception as e:
|
118 |
+
logger.warning(f"Error cleaning up temporary files: {str(e)}")
|
119 |
+
|
120 |
+
return response
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
logger.error(f"Error processing image: {str(e)}")
|
124 |
+
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
125 |
+
|
126 |
+
|
127 |
+
@app.get("/health")
|
128 |
+
def health_check():
|
129 |
+
return {"status": "healthy"}
|
130 |
+
|
131 |
+
|
132 |
+
if __name__ == "__main__":
|
133 |
+
import uvicorn
|
134 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
app/scene_graph_service.py
ADDED
@@ -0,0 +1,885 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import networkx as nx
|
7 |
+
from PIL import Image
|
8 |
+
import torchvision.transforms as T
|
9 |
+
from typing import Dict, List, Tuple, Any, Union, Optional
|
10 |
+
import logging
|
11 |
+
|
12 |
+
# Import from your existing code
|
13 |
+
from ultralytics import YOLO
|
14 |
+
from math import isclose
|
15 |
+
|
16 |
+
# Configure logging
|
17 |
+
logging.basicConfig(level=logging.INFO)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
# Set random seeds for reproducibility
|
22 |
+
def set_seeds(seed=42):
|
23 |
+
import random
|
24 |
+
|
25 |
+
random.seed(seed)
|
26 |
+
np.random.seed(seed)
|
27 |
+
torch.manual_seed(seed)
|
28 |
+
torch.cuda.manual_seed_all(seed)
|
29 |
+
torch.backends.cudnn.deterministic = True
|
30 |
+
torch.backends.cudnn.benchmark = False
|
31 |
+
|
32 |
+
|
33 |
+
# Call this at the start
|
34 |
+
set_seeds(42)
|
35 |
+
|
36 |
+
# Configuration
|
37 |
+
CONFIG = {
|
38 |
+
"img_size": 512,
|
39 |
+
"model": {
|
40 |
+
"backbone": "resnet50",
|
41 |
+
"embedding_dim": 512,
|
42 |
+
"hidden_dim": 256,
|
43 |
+
},
|
44 |
+
"yolo": {
|
45 |
+
"model": "yolov8n.pt", # Using the smallest YOLOv8 model for speed
|
46 |
+
"conf": 0.25, # Default confidence threshold
|
47 |
+
"iou": 0.45, # Default IoU threshold for NMS
|
48 |
+
},
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
# Vocabulary class
|
53 |
+
class Vocabulary:
|
54 |
+
"""Vocabulary for objects, attributes, and relationships in scene graphs."""
|
55 |
+
|
56 |
+
def __init__(self):
|
57 |
+
# Initialize dictionaries for mapping between terms and IDs
|
58 |
+
self.object2id = {"<unk>": 0}
|
59 |
+
self.id2object = {0: "<unk>"}
|
60 |
+
self.relationship2id = {"<unk>": 0}
|
61 |
+
self.id2relationship = {0: "<unk>"}
|
62 |
+
self.attribute2id = {"<unk>": 0}
|
63 |
+
self.id2attribute = {0: "<unk>"}
|
64 |
+
|
65 |
+
def get_object_id(self, obj_name: str) -> int:
|
66 |
+
return self.object2id.get(obj_name, 0) # Return <unk> ID if not found
|
67 |
+
|
68 |
+
def get_relationship_id(self, rel_name: str) -> int:
|
69 |
+
return self.relationship2id.get(rel_name, 0) # Return <unk> ID if not found
|
70 |
+
|
71 |
+
def get_attribute_id(self, attr_name: str) -> int:
|
72 |
+
return self.attribute2id.get(attr_name, 0) # Return <unk> ID if not found
|
73 |
+
|
74 |
+
def get_object_name(self, obj_id: int) -> str:
|
75 |
+
return self.id2object.get(obj_id, "<unk>")
|
76 |
+
|
77 |
+
def get_relationship_name(self, rel_id: int) -> str:
|
78 |
+
return self.id2relationship.get(rel_id, "<unk>")
|
79 |
+
|
80 |
+
def get_attribute_name(self, attr_id: int) -> str:
|
81 |
+
return self.id2attribute.get(attr_id, "<unk>")
|
82 |
+
|
83 |
+
@classmethod
|
84 |
+
def load(cls, path: str) -> "Vocabulary":
|
85 |
+
"""Load vocabulary from a JSON file."""
|
86 |
+
vocab = cls()
|
87 |
+
|
88 |
+
with open(path, "r") as f:
|
89 |
+
data = json.load(f)
|
90 |
+
|
91 |
+
# Load objects
|
92 |
+
vocab.object2id = data["objects"]
|
93 |
+
vocab.id2object = {
|
94 |
+
int(k): v for k, v in {v: k for k, v in vocab.object2id.items()}.items()
|
95 |
+
}
|
96 |
+
|
97 |
+
# Load relationships
|
98 |
+
vocab.relationship2id = data["relationships"]
|
99 |
+
vocab.id2relationship = {
|
100 |
+
int(k): v
|
101 |
+
for k, v in {v: k for k, v in vocab.relationship2id.items()}.items()
|
102 |
+
}
|
103 |
+
|
104 |
+
# Load attributes
|
105 |
+
vocab.attribute2id = data["attributes"]
|
106 |
+
vocab.id2attribute = {
|
107 |
+
int(k): v for k, v in {v: k for k, v in vocab.attribute2id.items()}.items()
|
108 |
+
}
|
109 |
+
|
110 |
+
return vocab
|
111 |
+
|
112 |
+
|
113 |
+
# Model Architecture
|
114 |
+
class VisualFeatureEncoder(torch.nn.Module):
|
115 |
+
"""Visual feature encoder for scene graph generation."""
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
backbone_name: str = "resnet50",
|
120 |
+
pretrained: bool = False,
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
|
124 |
+
self.backbone_name = backbone_name
|
125 |
+
self.backbone, self.out_channels = self._get_backbone(backbone_name, pretrained)
|
126 |
+
|
127 |
+
def _get_backbone(
|
128 |
+
self, backbone_name: str, pretrained: bool
|
129 |
+
) -> Tuple[torch.nn.Module, int]:
|
130 |
+
"""Get backbone network and output channels."""
|
131 |
+
if backbone_name == "resnet50":
|
132 |
+
from torchvision.models import resnet50
|
133 |
+
|
134 |
+
backbone = resnet50(pretrained=pretrained)
|
135 |
+
# Remove the last FC layer
|
136 |
+
backbone = torch.nn.Sequential(*list(backbone.children())[:-2])
|
137 |
+
out_channels = 2048
|
138 |
+
else:
|
139 |
+
raise ValueError(f"Unsupported backbone: {backbone_name}")
|
140 |
+
|
141 |
+
return backbone, out_channels
|
142 |
+
|
143 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
144 |
+
"""Extract features from images."""
|
145 |
+
return self.backbone(x)
|
146 |
+
|
147 |
+
|
148 |
+
class RelationshipPredictor(torch.nn.Module):
|
149 |
+
"""Predicts relationships between object pairs."""
|
150 |
+
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
num_obj_classes: int,
|
154 |
+
num_rel_classes: int,
|
155 |
+
obj_embed_dim: int = 256,
|
156 |
+
rel_embed_dim: int = 256,
|
157 |
+
hidden_dim: int = 512,
|
158 |
+
dropout: float = 0.2,
|
159 |
+
):
|
160 |
+
super().__init__()
|
161 |
+
|
162 |
+
# Object embeddings
|
163 |
+
self.obj_embedding = torch.nn.Embedding(num_obj_classes, obj_embed_dim)
|
164 |
+
|
165 |
+
# Spatial feature extractor
|
166 |
+
self.spatial_fc = torch.nn.Sequential(
|
167 |
+
torch.nn.Linear(10, 64), # 10 = 5 (subject) + 5 (object) spatial features
|
168 |
+
torch.nn.ReLU(),
|
169 |
+
torch.nn.Dropout(dropout),
|
170 |
+
torch.nn.Linear(64, 128),
|
171 |
+
torch.nn.ReLU(),
|
172 |
+
)
|
173 |
+
|
174 |
+
# Visual feature fusion
|
175 |
+
self.visual_fusion = torch.nn.Sequential(
|
176 |
+
torch.nn.Linear(obj_embed_dim * 2 + 128, hidden_dim),
|
177 |
+
torch.nn.ReLU(),
|
178 |
+
torch.nn.Dropout(dropout),
|
179 |
+
torch.nn.Linear(hidden_dim, hidden_dim),
|
180 |
+
torch.nn.ReLU(),
|
181 |
+
)
|
182 |
+
|
183 |
+
# Relationship classifier
|
184 |
+
self.rel_classifier = torch.nn.Linear(hidden_dim, num_rel_classes)
|
185 |
+
|
186 |
+
def forward(
|
187 |
+
self,
|
188 |
+
obj_features: List[torch.Tensor],
|
189 |
+
obj_boxes: List[torch.Tensor],
|
190 |
+
obj_pairs: List[torch.Tensor],
|
191 |
+
) -> Dict[str, List[torch.Tensor]]:
|
192 |
+
"""Forward pass for relationship prediction."""
|
193 |
+
results = {}
|
194 |
+
all_rel_logits = []
|
195 |
+
|
196 |
+
# Process each example in the batch
|
197 |
+
for i, (feats, boxes, pairs) in enumerate(
|
198 |
+
zip(obj_features, obj_boxes, obj_pairs)
|
199 |
+
):
|
200 |
+
if len(pairs) == 0 or boxes.size(0) == 0:
|
201 |
+
# No relationships to predict
|
202 |
+
all_rel_logits.append(None)
|
203 |
+
continue
|
204 |
+
|
205 |
+
# Extract object classes from boxes
|
206 |
+
obj_classes = boxes[:, 4].long()
|
207 |
+
obj_embeds = self.obj_embedding(obj_classes)
|
208 |
+
|
209 |
+
# Create pairs of object features
|
210 |
+
subj_idx = pairs[:, 0].long()
|
211 |
+
obj_idx = pairs[:, 1].long()
|
212 |
+
|
213 |
+
subj_feats = obj_embeds[subj_idx]
|
214 |
+
obj_feats = obj_embeds[obj_idx]
|
215 |
+
|
216 |
+
# Spatial features
|
217 |
+
subj_boxes = boxes[subj_idx, :4] # [x_c, y_c, w, h]
|
218 |
+
obj_boxes = boxes[obj_idx, :4] # [x_c, y_c, w, h]
|
219 |
+
|
220 |
+
# Compute relative spatial features
|
221 |
+
delta_x = subj_boxes[:, 0] - obj_boxes[:, 0]
|
222 |
+
delta_y = subj_boxes[:, 1] - obj_boxes[:, 1]
|
223 |
+
|
224 |
+
# Concatenate spatial features
|
225 |
+
spatial_feats = torch.cat(
|
226 |
+
[subj_boxes, obj_boxes, delta_x.unsqueeze(1), delta_y.unsqueeze(1)],
|
227 |
+
dim=1,
|
228 |
+
)
|
229 |
+
|
230 |
+
spatial_feats = self.spatial_fc(spatial_feats)
|
231 |
+
|
232 |
+
# Concatenate subject and object features
|
233 |
+
subj_obj_feats = torch.cat([subj_feats, obj_feats, spatial_feats], dim=1)
|
234 |
+
|
235 |
+
# Visual fusion
|
236 |
+
fused_feats = self.visual_fusion(subj_obj_feats)
|
237 |
+
|
238 |
+
# Predict relationships
|
239 |
+
rel_logits = self.rel_classifier(fused_feats)
|
240 |
+
all_rel_logits.append(rel_logits)
|
241 |
+
|
242 |
+
results["rel_logits"] = all_rel_logits
|
243 |
+
return results
|
244 |
+
|
245 |
+
|
246 |
+
class SceneGraphGenerationModel(torch.nn.Module):
|
247 |
+
"""Complete scene graph generation model."""
|
248 |
+
|
249 |
+
def __init__(
|
250 |
+
self,
|
251 |
+
backbone: torch.nn.Module,
|
252 |
+
num_obj_classes: int,
|
253 |
+
num_rel_classes: int,
|
254 |
+
num_attr_classes: int,
|
255 |
+
roi_size: int = 7,
|
256 |
+
embedding_dim: int = 512,
|
257 |
+
hidden_dim: int = 256,
|
258 |
+
dropout: float = 0.0,
|
259 |
+
):
|
260 |
+
super().__init__()
|
261 |
+
|
262 |
+
self.backbone = backbone
|
263 |
+
self.num_obj_classes = num_obj_classes
|
264 |
+
self.num_rel_classes = num_rel_classes
|
265 |
+
|
266 |
+
# RoI pooling for object features
|
267 |
+
self.roi_size = roi_size
|
268 |
+
self.roi_pool = torch.nn.AdaptiveAvgPool2d((roi_size, roi_size))
|
269 |
+
|
270 |
+
# Object feature embedding
|
271 |
+
self.obj_feature_embedding = torch.nn.Sequential(
|
272 |
+
torch.nn.Linear(backbone.out_channels * roi_size * roi_size, embedding_dim),
|
273 |
+
torch.nn.ReLU(),
|
274 |
+
torch.nn.Dropout(dropout),
|
275 |
+
)
|
276 |
+
|
277 |
+
# Object classifier
|
278 |
+
self.obj_classifier = torch.nn.Linear(embedding_dim, num_obj_classes)
|
279 |
+
|
280 |
+
# Attribute classifier
|
281 |
+
self.attr_classifier = torch.nn.Linear(embedding_dim, num_attr_classes)
|
282 |
+
|
283 |
+
# Bounding box regressor
|
284 |
+
self.bbox_regressor = torch.nn.Linear(embedding_dim, 4) # [x_c, y_c, w, h]
|
285 |
+
|
286 |
+
# Relationship predictor
|
287 |
+
self.relationship_predictor = RelationshipPredictor(
|
288 |
+
num_obj_classes=num_obj_classes,
|
289 |
+
num_rel_classes=num_rel_classes,
|
290 |
+
obj_embed_dim=embedding_dim,
|
291 |
+
hidden_dim=hidden_dim,
|
292 |
+
dropout=dropout,
|
293 |
+
)
|
294 |
+
|
295 |
+
def extract_roi_features(
|
296 |
+
self,
|
297 |
+
features: torch.Tensor, # [batch_size, channels, height, width]
|
298 |
+
boxes: List[
|
299 |
+
torch.Tensor
|
300 |
+
], # List of [num_boxes, 4] tensors with normalized boxes
|
301 |
+
) -> List[torch.Tensor]:
|
302 |
+
"""Extract RoI features for objects."""
|
303 |
+
batch_size = features.shape[0]
|
304 |
+
roi_features = []
|
305 |
+
|
306 |
+
for i in range(batch_size):
|
307 |
+
if len(boxes[i]) == 0:
|
308 |
+
# No objects in this image
|
309 |
+
roi_features.append(
|
310 |
+
torch.empty(
|
311 |
+
0,
|
312 |
+
self.backbone.out_channels * self.roi_size**2,
|
313 |
+
device=features.device,
|
314 |
+
)
|
315 |
+
)
|
316 |
+
continue
|
317 |
+
|
318 |
+
# Convert normalized [x_c, y_c, w, h] to [x1, y1, x2, y2]
|
319 |
+
bbox = boxes[i][:, :4]
|
320 |
+
x_c, y_c, w, h = bbox[:, 0], bbox[:, 1], bbox[:, 2], bbox[:, 3]
|
321 |
+
x1 = (x_c - w / 2) * features.shape[3]
|
322 |
+
y1 = (y_c - h / 2) * features.shape[2]
|
323 |
+
x2 = (x_c + w / 2) * features.shape[3]
|
324 |
+
y2 = (y_c + h / 2) * features.shape[2]
|
325 |
+
|
326 |
+
# Ensure boxes are within image
|
327 |
+
x1 = torch.clamp(x1, 0, features.shape[3] - 1)
|
328 |
+
y1 = torch.clamp(y1, 0, features.shape[2] - 1)
|
329 |
+
x2 = torch.clamp(x2, 0, features.shape[3] - 1)
|
330 |
+
y2 = torch.clamp(y2, 0, features.shape[2] - 1)
|
331 |
+
|
332 |
+
# Create RoI boxes for torchvision's RoIPool
|
333 |
+
rois = torch.stack([x1, y1, x2, y2], dim=1)
|
334 |
+
|
335 |
+
# Extract features for each RoI
|
336 |
+
obj_features = []
|
337 |
+
for roi in rois:
|
338 |
+
x1, y1, x2, y2 = map(int, roi.cpu().numpy())
|
339 |
+
# Ensure valid box dimensions
|
340 |
+
if x2 <= x1 or y2 <= y1:
|
341 |
+
roi_feat = torch.zeros(
|
342 |
+
self.backbone.out_channels,
|
343 |
+
self.roi_size,
|
344 |
+
self.roi_size,
|
345 |
+
device=features.device,
|
346 |
+
)
|
347 |
+
else:
|
348 |
+
# Extract feature for this ROI
|
349 |
+
roi_feat = self.roi_pool(
|
350 |
+
features[i, :, y1:y2, x1:x2].unsqueeze(0)
|
351 |
+
).squeeze(0)
|
352 |
+
|
353 |
+
# Flatten the feature
|
354 |
+
roi_feat = roi_feat.view(-1)
|
355 |
+
obj_features.append(roi_feat)
|
356 |
+
|
357 |
+
if obj_features:
|
358 |
+
obj_features = torch.stack(obj_features)
|
359 |
+
else:
|
360 |
+
obj_features = torch.empty(
|
361 |
+
0,
|
362 |
+
self.backbone.out_channels * self.roi_size**2,
|
363 |
+
device=features.device,
|
364 |
+
)
|
365 |
+
|
366 |
+
roi_features.append(obj_features)
|
367 |
+
|
368 |
+
return roi_features
|
369 |
+
|
370 |
+
def forward(
|
371 |
+
self, images: torch.Tensor, boxes: List[torch.Tensor]
|
372 |
+
) -> Dict[str, Any]:
|
373 |
+
"""Forward pass for scene graph generation."""
|
374 |
+
batch_size = images.shape[0]
|
375 |
+
|
376 |
+
# Extract features from backbone
|
377 |
+
features = self.backbone(images)
|
378 |
+
|
379 |
+
# Extract RoI features
|
380 |
+
roi_features = self.extract_roi_features(features, boxes)
|
381 |
+
|
382 |
+
# Process each example in the batch
|
383 |
+
obj_logits_list = []
|
384 |
+
attr_logits_list = []
|
385 |
+
bbox_pred_list = []
|
386 |
+
obj_features_list = []
|
387 |
+
|
388 |
+
for i in range(batch_size):
|
389 |
+
if roi_features[i].shape[0] == 0:
|
390 |
+
# No objects in this image
|
391 |
+
obj_logits_list.append(
|
392 |
+
torch.empty(0, self.num_obj_classes, device=images.device)
|
393 |
+
)
|
394 |
+
attr_logits_list.append(
|
395 |
+
torch.empty(0, self.num_attr_classes, device=images.device)
|
396 |
+
)
|
397 |
+
bbox_pred_list.append(torch.empty(0, 4, device=images.device))
|
398 |
+
obj_features_list.append(
|
399 |
+
torch.empty(
|
400 |
+
0,
|
401 |
+
self.obj_feature_embedding[0].out_features,
|
402 |
+
device=images.device,
|
403 |
+
)
|
404 |
+
)
|
405 |
+
continue
|
406 |
+
|
407 |
+
# Embed RoI features
|
408 |
+
obj_feats = self.obj_feature_embedding(roi_features[i])
|
409 |
+
obj_features_list.append(obj_feats)
|
410 |
+
|
411 |
+
# Predict object classes
|
412 |
+
obj_logits = self.obj_classifier(obj_feats)
|
413 |
+
obj_logits_list.append(obj_logits)
|
414 |
+
|
415 |
+
# Predict attributes
|
416 |
+
attr_logits = self.attr_classifier(obj_feats)
|
417 |
+
attr_logits_list.append(attr_logits)
|
418 |
+
|
419 |
+
# Regress bounding box refinements
|
420 |
+
bbox_pred = self.bbox_regressor(obj_feats)
|
421 |
+
bbox_pred_list.append(bbox_pred)
|
422 |
+
|
423 |
+
# Create object pairs for relationship prediction
|
424 |
+
obj_pairs = []
|
425 |
+
for i in range(batch_size):
|
426 |
+
if boxes[i].shape[0] <= 1:
|
427 |
+
# Need at least 2 objects for relationships
|
428 |
+
obj_pairs.append(torch.empty(0, 2, device=images.device))
|
429 |
+
continue
|
430 |
+
|
431 |
+
# Create all possible object pairs
|
432 |
+
num_objs = boxes[i].shape[0]
|
433 |
+
subj_idx = torch.arange(num_objs, device=images.device).repeat_interleave(
|
434 |
+
num_objs
|
435 |
+
)
|
436 |
+
obj_idx = torch.arange(num_objs, device=images.device).repeat(num_objs)
|
437 |
+
|
438 |
+
# Exclude self-relationships
|
439 |
+
mask = subj_idx != obj_idx
|
440 |
+
pairs = torch.stack([subj_idx[mask], obj_idx[mask]], dim=1)
|
441 |
+
obj_pairs.append(pairs)
|
442 |
+
|
443 |
+
# Predict relationships
|
444 |
+
rel_preds = self.relationship_predictor(obj_features_list, boxes, obj_pairs)
|
445 |
+
|
446 |
+
return {
|
447 |
+
"obj_logits": obj_logits_list,
|
448 |
+
"attr_logits": attr_logits_list,
|
449 |
+
"bbox_pred": bbox_pred_list,
|
450 |
+
"rel_logits": rel_preds.get("rel_logits", []),
|
451 |
+
"obj_pairs": obj_pairs,
|
452 |
+
}
|
453 |
+
|
454 |
+
|
455 |
+
# YOLO-based object detection
|
456 |
+
def detect_objects_yolo(
|
457 |
+
image_path: str,
|
458 |
+
vocabulary: Vocabulary,
|
459 |
+
device: torch.device,
|
460 |
+
use_fixed_boxes: bool = False,
|
461 |
+
) -> torch.Tensor:
|
462 |
+
"""
|
463 |
+
Detect objects in an image using YOLOv8.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
image_path: Path to the input image
|
467 |
+
vocabulary: Vocabulary for mapping class names
|
468 |
+
device: PyTorch device
|
469 |
+
use_fixed_boxes: Whether to use fixed boxes or YOLO detection
|
470 |
+
|
471 |
+
Returns:
|
472 |
+
Bounding boxes in format [x_c, y_c, w, h, class_id] (normalized)
|
473 |
+
"""
|
474 |
+
# Load YOLOv8 model - will download if not present
|
475 |
+
yolo_model = YOLO(CONFIG["yolo"]["model"])
|
476 |
+
|
477 |
+
# Run inference
|
478 |
+
results = yolo_model(image_path)
|
479 |
+
detections = results[0]
|
480 |
+
|
481 |
+
# No detections
|
482 |
+
if len(detections.boxes) == 0:
|
483 |
+
return torch.zeros((0, 5), device=device, dtype=torch.float32)
|
484 |
+
|
485 |
+
# Process detections
|
486 |
+
boxes = []
|
487 |
+
|
488 |
+
# Get image dimensions
|
489 |
+
img = Image.open(image_path)
|
490 |
+
img_width, img_height = img.size
|
491 |
+
|
492 |
+
# YOLO class names (COCO class names)
|
493 |
+
yolo_class_names = yolo_model.names
|
494 |
+
|
495 |
+
# Create class name mapping from YOLO to our vocabulary
|
496 |
+
class_name_map = {}
|
497 |
+
for yolo_id, yolo_name in yolo_class_names.items():
|
498 |
+
# Try direct mapping first
|
499 |
+
if yolo_name in vocabulary.object2id:
|
500 |
+
class_name_map[yolo_id] = vocabulary.get_object_id(yolo_name)
|
501 |
+
# Try lowercase
|
502 |
+
elif yolo_name.lower() in vocabulary.object2id:
|
503 |
+
class_name_map[yolo_id] = vocabulary.get_object_id(yolo_name.lower())
|
504 |
+
# Fallback to <unk>
|
505 |
+
else:
|
506 |
+
class_name_map[yolo_id] = 0 # <unk>
|
507 |
+
|
508 |
+
# Process each detection
|
509 |
+
for i in range(len(detections.boxes)):
|
510 |
+
box = detections.boxes[i]
|
511 |
+
|
512 |
+
# Get class ID and confidence
|
513 |
+
cls_id = int(box.cls.item())
|
514 |
+
confidence = box.conf.item()
|
515 |
+
|
516 |
+
# Skip low-confidence detections
|
517 |
+
if confidence < CONFIG["yolo"]["conf"]:
|
518 |
+
continue
|
519 |
+
|
520 |
+
# Get bounding box in xyxy format (unnormalized)
|
521 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
522 |
+
|
523 |
+
# Convert to xywh format and normalize
|
524 |
+
x_c = ((x1 + x2) / 2) / img_width
|
525 |
+
y_c = ((y1 + y2) / 2) / img_height
|
526 |
+
w = (x2 - x1) / img_width
|
527 |
+
h = (y2 - y1) / img_height
|
528 |
+
|
529 |
+
# Map class ID to vocabulary
|
530 |
+
vocab_cls_id = class_name_map.get(cls_id, 0) # Default to <unk> if not found
|
531 |
+
|
532 |
+
# Add to boxes
|
533 |
+
boxes.append([x_c, y_c, w, h, vocab_cls_id])
|
534 |
+
|
535 |
+
# Convert to tensor with explicit float32 dtype
|
536 |
+
if boxes:
|
537 |
+
return torch.tensor(boxes, device=device, dtype=torch.float32)
|
538 |
+
else:
|
539 |
+
return torch.zeros((0, 5), device=device, dtype=torch.float32)
|
540 |
+
|
541 |
+
|
542 |
+
# Visualization functions
|
543 |
+
def visualize_image_with_boxes(
|
544 |
+
image: np.ndarray, objects: List[Dict[str, Any]], output_path: str
|
545 |
+
) -> None:
|
546 |
+
"""Visualize image with bounding boxes and labels."""
|
547 |
+
# Create figure
|
548 |
+
plt.figure(figsize=(10, 8))
|
549 |
+
|
550 |
+
# Display image
|
551 |
+
plt.imshow(image)
|
552 |
+
|
553 |
+
# Get image dimensions
|
554 |
+
img_height, img_width = image.shape[:2]
|
555 |
+
|
556 |
+
# Generate colors for classes
|
557 |
+
num_classes = len(objects)
|
558 |
+
colors = plt.cm.hsv(np.linspace(0, 1, num_classes))
|
559 |
+
|
560 |
+
# Draw bounding boxes and labels
|
561 |
+
for i, obj in enumerate(objects):
|
562 |
+
# Get bounding box
|
563 |
+
x_c, y_c, w, h = obj["bbox"]
|
564 |
+
|
565 |
+
# Scale to image size if normalized
|
566 |
+
if max(x_c, y_c, w, h) <= 1.0:
|
567 |
+
x_c *= img_width
|
568 |
+
y_c *= img_height
|
569 |
+
w *= img_width
|
570 |
+
h *= img_height
|
571 |
+
|
572 |
+
# Convert to (x1, y1, x2, y2) format
|
573 |
+
x1 = x_c - w / 2
|
574 |
+
y1 = y_c - h / 2
|
575 |
+
x2 = x_c + w / 2
|
576 |
+
y2 = y_c + h / 2
|
577 |
+
|
578 |
+
# Draw bounding box
|
579 |
+
rect = plt.Rectangle(
|
580 |
+
(x1, y1),
|
581 |
+
x2 - x1,
|
582 |
+
y2 - y1,
|
583 |
+
linewidth=2,
|
584 |
+
edgecolor=colors[i % len(colors)],
|
585 |
+
facecolor="none",
|
586 |
+
)
|
587 |
+
plt.gca().add_patch(rect)
|
588 |
+
|
589 |
+
# Draw label
|
590 |
+
plt.text(
|
591 |
+
x1,
|
592 |
+
y1 - 5,
|
593 |
+
f"{obj['label']} ({obj['score']:.2f})",
|
594 |
+
color=colors[i % len(colors)],
|
595 |
+
fontsize=10,
|
596 |
+
bbox=dict(facecolor="white", alpha=0.7, edgecolor="none", pad=1),
|
597 |
+
)
|
598 |
+
|
599 |
+
# Add a title
|
600 |
+
plt.title("Object Detection")
|
601 |
+
plt.axis("off")
|
602 |
+
|
603 |
+
# Save the figure
|
604 |
+
plt.tight_layout()
|
605 |
+
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
606 |
+
plt.close()
|
607 |
+
|
608 |
+
logger.info(f"Annotated image saved to {output_path}")
|
609 |
+
|
610 |
+
|
611 |
+
def visualize_graph(
|
612 |
+
objects: List[Dict[str, Any]], relationships: List[Dict[str, Any]], output_path: str
|
613 |
+
) -> None:
|
614 |
+
"""Visualize relationship graph."""
|
615 |
+
# Create figure
|
616 |
+
plt.figure(figsize=(10, 8))
|
617 |
+
|
618 |
+
# Create graph
|
619 |
+
G = nx.DiGraph()
|
620 |
+
|
621 |
+
# Add nodes
|
622 |
+
for i, obj in enumerate(objects):
|
623 |
+
G.add_node(i, label=obj["label"])
|
624 |
+
|
625 |
+
# Add edges
|
626 |
+
for rel in relationships:
|
627 |
+
subj_idx = rel["subject_id"]
|
628 |
+
obj_idx = rel["object_id"]
|
629 |
+
G.add_edge(subj_idx, obj_idx, label=rel["predicate"])
|
630 |
+
|
631 |
+
# Position nodes
|
632 |
+
pos = nx.spring_layout(G, seed=42)
|
633 |
+
|
634 |
+
# Draw nodes
|
635 |
+
nx.draw_networkx_nodes(G, pos, node_size=700, node_color="skyblue", alpha=0.8)
|
636 |
+
|
637 |
+
# Draw node labels
|
638 |
+
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold")
|
639 |
+
|
640 |
+
# Draw edges
|
641 |
+
nx.draw_networkx_edges(G, pos, width=2, alpha=0.7, arrows=True, arrowsize=15)
|
642 |
+
|
643 |
+
# Draw edge labels
|
644 |
+
nx.draw_networkx_edge_labels(
|
645 |
+
G, pos, edge_labels=nx.get_edge_attributes(G, "label"), font_size=8
|
646 |
+
)
|
647 |
+
|
648 |
+
# Add a title
|
649 |
+
plt.title("Scene Graph")
|
650 |
+
plt.axis("off")
|
651 |
+
|
652 |
+
# Save the figure
|
653 |
+
plt.tight_layout()
|
654 |
+
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
655 |
+
plt.close()
|
656 |
+
|
657 |
+
logger.info(f"Graph visualization saved to {output_path}")
|
658 |
+
|
659 |
+
|
660 |
+
def process_image(
|
661 |
+
image_path: str,
|
662 |
+
model_path: str,
|
663 |
+
vocabulary_path: str,
|
664 |
+
confidence_threshold: float = 0.5,
|
665 |
+
use_fixed_boxes: bool = False,
|
666 |
+
output_dir: str = "outputs",
|
667 |
+
base_filename: str = None,
|
668 |
+
) -> Tuple[List, List, str, str]:
|
669 |
+
"""
|
670 |
+
Process an image to generate a scene graph.
|
671 |
+
|
672 |
+
Args:
|
673 |
+
image_path: Path to the input image
|
674 |
+
model_path: Path to the model checkpoint
|
675 |
+
vocabulary_path: Path to the vocabulary file
|
676 |
+
confidence_threshold: Confidence threshold for relationships
|
677 |
+
use_fixed_boxes: Whether to use fixed boxes or YOLO detection
|
678 |
+
output_dir: Directory to save outputs
|
679 |
+
base_filename: Optional base filename to use instead of the original image name
|
680 |
+
|
681 |
+
Returns:
|
682 |
+
Tuple of (objects, relationships, annotated_image_path, graph_path)
|
683 |
+
"""
|
684 |
+
# Check if files exist
|
685 |
+
if not os.path.exists(image_path):
|
686 |
+
raise FileNotFoundError(f"Image not found at {image_path}")
|
687 |
+
|
688 |
+
if not os.path.exists(model_path):
|
689 |
+
raise FileNotFoundError(f"Model not found at {model_path}")
|
690 |
+
|
691 |
+
if not os.path.exists(vocabulary_path):
|
692 |
+
raise FileNotFoundError(f"Vocabulary not found at {vocabulary_path}")
|
693 |
+
|
694 |
+
# Create output directory if it doesn't exist
|
695 |
+
os.makedirs(output_dir, exist_ok=True)
|
696 |
+
|
697 |
+
# Load vocabulary
|
698 |
+
vocabulary = Vocabulary.load(vocabulary_path)
|
699 |
+
logger.info(
|
700 |
+
f"Loaded vocabulary with {len(vocabulary.object2id)} objects and {len(vocabulary.relationship2id)} relationships"
|
701 |
+
)
|
702 |
+
|
703 |
+
# Set device
|
704 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
705 |
+
logger.info(f"Using device: {device}")
|
706 |
+
|
707 |
+
# Load and preprocess image
|
708 |
+
image = Image.open(image_path).convert("RGB")
|
709 |
+
img_width, img_height = image.size
|
710 |
+
|
711 |
+
# Use YOLO for object detection
|
712 |
+
logger.info("Detecting objects with YOLO...")
|
713 |
+
boxes = detect_objects_yolo(image_path, vocabulary, device, use_fixed_boxes)
|
714 |
+
logger.info(f"Detected {len(boxes)} objects")
|
715 |
+
|
716 |
+
if len(boxes) == 0:
|
717 |
+
raise ValueError("No objects detected. Cannot generate scene graph.")
|
718 |
+
|
719 |
+
# Create encoder
|
720 |
+
encoder = VisualFeatureEncoder(backbone_name=CONFIG["model"]["backbone"])
|
721 |
+
|
722 |
+
# Create model
|
723 |
+
model = SceneGraphGenerationModel(
|
724 |
+
backbone=encoder,
|
725 |
+
num_obj_classes=len(vocabulary.object2id),
|
726 |
+
num_rel_classes=len(vocabulary.relationship2id),
|
727 |
+
num_attr_classes=len(vocabulary.attribute2id),
|
728 |
+
embedding_dim=CONFIG["model"]["embedding_dim"],
|
729 |
+
hidden_dim=CONFIG["model"]["hidden_dim"],
|
730 |
+
)
|
731 |
+
|
732 |
+
# Load model weights
|
733 |
+
logger.info(f"Loading model from {model_path}...")
|
734 |
+
checkpoint = torch.load(model_path, map_location=device)
|
735 |
+
if "model_state_dict" in checkpoint:
|
736 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
737 |
+
logger.info("Loaded model state dict from checkpoint")
|
738 |
+
else:
|
739 |
+
model.load_state_dict(checkpoint)
|
740 |
+
logger.info("Loaded direct model state from checkpoint")
|
741 |
+
|
742 |
+
model.to(device)
|
743 |
+
model.eval()
|
744 |
+
|
745 |
+
# Preprocess image for scene graph model
|
746 |
+
transform = T.Compose(
|
747 |
+
[
|
748 |
+
T.Resize((CONFIG["img_size"], CONFIG["img_size"])),
|
749 |
+
T.ToTensor(),
|
750 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
751 |
+
]
|
752 |
+
)
|
753 |
+
img_tensor = transform(image).unsqueeze(0).to(device)
|
754 |
+
|
755 |
+
# Run inference for scene graph generation
|
756 |
+
logger.info("Generating scene graph...")
|
757 |
+
with torch.no_grad():
|
758 |
+
# Forward pass
|
759 |
+
outputs = model(img_tensor, [boxes])
|
760 |
+
|
761 |
+
# Process predictions
|
762 |
+
obj_logits = outputs["obj_logits"][0]
|
763 |
+
obj_probs = torch.softmax(obj_logits, dim=1)
|
764 |
+
obj_scores, obj_labels = torch.max(obj_probs, dim=1)
|
765 |
+
|
766 |
+
# Get bounding box predictions
|
767 |
+
bbox_pred = outputs["bbox_pred"][0]
|
768 |
+
|
769 |
+
# Create object list
|
770 |
+
objects = []
|
771 |
+
for i in range(len(obj_labels)):
|
772 |
+
bbox = bbox_pred[i].cpu().numpy().tolist()
|
773 |
+
label_id = obj_labels[i].item()
|
774 |
+
score = obj_scores[i].item()
|
775 |
+
|
776 |
+
objects.append(
|
777 |
+
{
|
778 |
+
"label": vocabulary.get_object_name(label_id),
|
779 |
+
"label_id": label_id,
|
780 |
+
"score": score,
|
781 |
+
"bbox": bbox,
|
782 |
+
}
|
783 |
+
)
|
784 |
+
|
785 |
+
# Process relationships
|
786 |
+
relationships = []
|
787 |
+
if "rel_logits" in outputs and outputs["rel_logits"]:
|
788 |
+
rel_logits = outputs["rel_logits"][0]
|
789 |
+
obj_pairs = outputs["obj_pairs"][0]
|
790 |
+
|
791 |
+
if rel_logits is not None and len(rel_logits) > 0:
|
792 |
+
rel_probs = torch.softmax(rel_logits, dim=1)
|
793 |
+
rel_scores, rel_labels = torch.max(rel_probs, dim=1)
|
794 |
+
|
795 |
+
# Filter by confidence
|
796 |
+
rel_mask = rel_scores > confidence_threshold
|
797 |
+
rel_labels = rel_labels[rel_mask]
|
798 |
+
rel_scores = rel_scores[rel_mask]
|
799 |
+
filtered_pairs = obj_pairs[rel_mask]
|
800 |
+
|
801 |
+
# Create relationship list
|
802 |
+
for i in range(len(rel_labels)):
|
803 |
+
subj_idx = filtered_pairs[i, 0].item()
|
804 |
+
obj_idx = filtered_pairs[i, 1].item()
|
805 |
+
label_id = rel_labels[i].item()
|
806 |
+
score = rel_scores[i].item()
|
807 |
+
|
808 |
+
# Map to filtered object indices
|
809 |
+
subj_new_idx = -1
|
810 |
+
obj_new_idx = -1
|
811 |
+
|
812 |
+
for j, obj in enumerate(objects):
|
813 |
+
if j == subj_idx:
|
814 |
+
subj_new_idx = j
|
815 |
+
if j == obj_idx:
|
816 |
+
obj_new_idx = j
|
817 |
+
|
818 |
+
if subj_new_idx != -1 and obj_new_idx != -1:
|
819 |
+
relationships.append(
|
820 |
+
{
|
821 |
+
"subject_id": subj_new_idx,
|
822 |
+
"object_id": obj_new_idx,
|
823 |
+
"predicate": vocabulary.get_relationship_name(label_id),
|
824 |
+
"predicate_id": label_id,
|
825 |
+
"score": score,
|
826 |
+
"subject": objects[subj_new_idx]["label"],
|
827 |
+
"object": objects[obj_new_idx]["label"],
|
828 |
+
}
|
829 |
+
)
|
830 |
+
|
831 |
+
# Determine base filename for output files
|
832 |
+
if base_filename:
|
833 |
+
# Use provided base filename if specified
|
834 |
+
file_prefix = base_filename
|
835 |
+
else:
|
836 |
+
# Otherwise use the original image name
|
837 |
+
file_prefix = os.path.splitext(os.path.basename(image_path))[0]
|
838 |
+
|
839 |
+
# Generate output filenames with consistent naming pattern
|
840 |
+
annotated_image_path = os.path.join(output_dir, f"{file_prefix}_annotated.png")
|
841 |
+
graph_path = os.path.join(output_dir, f"{file_prefix}_graph.png")
|
842 |
+
|
843 |
+
# Log the paths for debugging
|
844 |
+
logger.info(f"Using file prefix: {file_prefix}")
|
845 |
+
logger.info(f"Saving annotated image to: {annotated_image_path}")
|
846 |
+
logger.info(f"Saving graph to: {graph_path}")
|
847 |
+
|
848 |
+
# Save visualizations
|
849 |
+
visualize_image_with_boxes(np.array(image), objects, annotated_image_path)
|
850 |
+
visualize_graph(objects, relationships, graph_path)
|
851 |
+
|
852 |
+
logger.info(f"Visualization complete. Files saved to:")
|
853 |
+
logger.info(f" - {annotated_image_path}")
|
854 |
+
logger.info(f" - {graph_path}")
|
855 |
+
|
856 |
+
# Convert objects for JSON serialization
|
857 |
+
serializable_objects = []
|
858 |
+
for obj in objects:
|
859 |
+
serializable_objects.append(
|
860 |
+
{
|
861 |
+
"label": obj["label"],
|
862 |
+
"label_id": int(obj["label_id"]),
|
863 |
+
"score": float(obj["score"]),
|
864 |
+
"bbox": [float(val) for val in obj["bbox"]],
|
865 |
+
}
|
866 |
+
)
|
867 |
+
|
868 |
+
return serializable_objects, relationships, annotated_image_path, graph_path
|
869 |
+
|
870 |
+
|
871 |
+
if __name__ == "__main__":
|
872 |
+
# This can be used for testing the service directly
|
873 |
+
image_path = "test.jpg"
|
874 |
+
model_path = "app/models/model.pth"
|
875 |
+
vocabulary_path = "app/models/vocabulary.json"
|
876 |
+
|
877 |
+
objects, relationships, annotated_path, graph_path = process_image(
|
878 |
+
image_path=image_path,
|
879 |
+
model_path=model_path,
|
880 |
+
vocabulary_path=vocabulary_path,
|
881 |
+
confidence_threshold=0.3,
|
882 |
+
output_dir="outputs",
|
883 |
+
)
|
884 |
+
|
885 |
+
print(f"Processed {len(objects)} objects and {len(relationships)} relationships")
|
download_model.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
import shutil
|
5 |
+
|
6 |
+
def download_models():
|
7 |
+
print("Downloading model files...")
|
8 |
+
|
9 |
+
# Create directories if they don't exist
|
10 |
+
os.makedirs("app/models", exist_ok=True)
|
11 |
+
|
12 |
+
try:
|
13 |
+
# Download the model and vocabulary from Hugging Face
|
14 |
+
model_path = hf_hub_download(
|
15 |
+
repo_id="dixisouls/scene-graph-model",
|
16 |
+
filename="model.pth",
|
17 |
+
repo_type="model"
|
18 |
+
)
|
19 |
+
vocab_path = hf_hub_download(
|
20 |
+
repo_id="dixisouls/scene-graph-model",
|
21 |
+
filename="vocabulary.json",
|
22 |
+
repo_type="model"
|
23 |
+
)
|
24 |
+
|
25 |
+
# Copy the downloaded files to the app/models directory
|
26 |
+
shutil.copy(model_path, "app/models/model.pth")
|
27 |
+
shutil.copy(vocab_path, "app/models/vocabulary.json")
|
28 |
+
|
29 |
+
print(f"Model downloaded successfully to app/models/model.pth")
|
30 |
+
print(f"Vocabulary downloaded successfully to app/models/vocabulary.json")
|
31 |
+
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Error downloading model files: {e}")
|
34 |
+
sys.exit(1)
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
download_models()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.104.1
|
2 |
+
uvicorn==0.24.0
|
3 |
+
torch==2.0.1
|
4 |
+
torchvision==0.15.2
|
5 |
+
numpy==1.24.3
|
6 |
+
Pillow==10.0.1
|
7 |
+
matplotlib==3.7.2
|
8 |
+
networkx==3.1
|
9 |
+
ultralytics==8.0.196
|
10 |
+
python-multipart==0.0.6
|
11 |
+
huggingface_hub==0.17.3
|