File size: 5,035 Bytes
200d507
 
 
 
 
 
 
 
94e7125
 
200d507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
from gradio_client import Client , handle_file
import cv2
import os
import shutil
from PIL import Image
from moviepy import *

clientImgPipeLn = Client("dj-dawgs-ipd/IPD-Image-Pipeline")
clientAudioPipeLn = Client("dj-dawgs-ipd/IPD-Audio-Pipeline")

def predict(video_path):
    cap = cv2.VideoCapture(video_path)
    fps = int(cap.get(cv2.CAP_PROP_FPS))  
    frame_interval = fps * 2

    frame_count = 0
    success = True

    temp_data_path = "temp_data"
    os.makedirs(temp_data_path, exist_ok=True)
    
    temp_frames_path = os.path.join(temp_data_path, "temp_frames")
    os.makedirs(temp_frames_path, exist_ok=True)
    
    resImg = {}
    resAudio = {}
    
    video_clip = VideoFileClip(video_path)
    
    if video_clip.audio is None:
        resAudio = {
            'prediction' : None,
            'language' : None,
            'label' : None,
            'confidence' : None,
            'hate_text' : None
        }
    else:
        audio_path = os.path.join(temp_data_path , "temp_audio.wav")
        video_clip.audio.write_audiofile(audio_path , codec="pcm_s16le")
        resAudio = clientAudioPipeLn.predict(
            audio_path = handle_file(audio_path),
            api_name = '/predict'
        )

    while success:
        success, frame = cap.read()
        if frame_count % frame_interval == 0 and success:
            
            temp_image_path = os.path.join(temp_data_path, f"temp_frames/temp_frame_{frame_count // fps}s.jpg")
            cv2.imwrite(temp_image_path, frame)

            response = clientImgPipeLn.predict(
                image=handle_file(temp_image_path),
                api_name="/predict"
            )
            
            print(f"Response for frame at {frame_count // fps}s: {response}")
            
            if response['prediction'] == 'hate':
                resImg = response
                resImg['hate_image_timestamp'] = frame_count//fps
                break

        frame_count += 1
    
    cap.release()
    
    shutil.rmtree(temp_data_path)
    
    if len(resImg) == 0 and resAudio['prediction'] == 'not_hate':
        return {
            'prediction' : 'not_hate',
            'language' : {
                'video' : None,
                'audio' : None
            },
            'label' : {
                'video' : None,
                'audio' : None
            },
            'confidence' : None,
            'hate_text' : {
                'video' : None,
                'audio' : None
            },
            'hate_image_timestamp' : None,
            'hate_component' : None
        }
    
    if resImg['prediction'] == 'hate' and resAudio['prediction'] == 'not_hate':
        resImg['hate_component'] = 'video'
        return {
            'prediction' : 'hate',
            'language' : {
                'video' : resImg['language'],
                'audio' : None
            },
            'label' : {
                'video' : resImg['label'],
                'audio' : None 
            },
            'confidence' : resImg['confidence'],
            'hate_text' : {
                'video' : resImg['hate_text'],
                'audio' : None
            },
            'hate_image_timestamp' : resImg['hate_image_timestamp'],
            'hate_component' : ["video"]
        }
    
    if len(resImg) == 0 and resAudio['prediction'] == 'hate':
        return {
            'prediction' : 'hate',
            'language' : {
                'video' : None,
                'audio' : resAudio['language']
            },
            'label' : {
                'video' : None,
                'audio' : resAudio['label']
            },
            'confidence' : resAudio['confidence'],
            'hate_text' : {
                'video' : None,
                'audio' : resAudio['hate_text']
            },
            'hate_image_timestamp' : None,
            'hate_component' : ["audio"],
        }
        
    return {
            'prediction' : 'hate',
            'language' : {
                'video' : resImg['language'],
                'audio' : resAudio['language']
            },
            'label' : {
                'video' : resImg['label'],
                'audio' : resAudio['label']
            },
            'confidence' : ((resImg['confidence'] or 0) + (resAudio['confidence'] or 0)) / (2 - (resImg['confidence'] == None or resAudio['confidence'] == None)),
            'hate_text' : {
                'video' : resImg['hate_text'],
                'audio' : resAudio['hate_text']
            },
            'hate_image_timestamp' : resImg['hate_image_timestamp'],
            'hate_component' : ["video" , "audio"]
    }
    
iface = gr.Interface(fn=predict,
                     inputs = gr.Video(),
                     outputs=gr.JSON(),
                     title = "Hate Speech Detection in Video",
                     description = "Detect hateful symbols or text in Video"
)
                     
if __name__ == "__main__":
    iface.launch(show_error = True)