Spaces:
Sleeping
Sleeping
File size: 5,886 Bytes
58c3ef1 54efbdc 58c3ef1 54efbdc 63ec66b 2158a6c 63ec66b ec37503 3c51bb4 63ec66b 24dc223 63ec66b ec37503 3c51bb4 63ec66b 54efbdc 58c3ef1 45bc695 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import torch
import librosa
import numpy as np
from sklearn.preprocessing import StandardScaler
import joblib
import parselmouth
from parselmouth.praat import call
from transformers import HubertForSequenceClassification
import torch.nn as nn
class HuBERTHateSpeechClassifier(nn.Module):
def __init__(self, input_dim, num_classes):
super().__init__()
self.hubert = HubertForSequenceClassification.from_pretrained(
"facebook/hubert-base-ls960"
)
self.classifier = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(128, 64),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(64, num_classes)
)
def forward(self, x):
return self.classifier(x)
class AudioFeatureExtractor:
def __init__(self, scaler_path='scaler.joblib'):
self.scaler = joblib.load(scaler_path)
def safe_mean(self, arr):
try:
arr = np.array(arr).flatten()
arr = arr[np.isfinite(arr)]
return float(np.mean(arr)) if len(arr) > 0 else 0.0
except Exception:
return 0.0
def safe_std(self, arr):
try:
arr = np.array(arr).flatten()
arr = arr[np.isfinite(arr)]
return float(np.std(arr)) if len(arr) > 1 else 0.0
except Exception:
return 0.0
def extract_features(self, audio_path):
try:
y, sr = librosa.load(audio_path, duration=5)
except Exception as e:
print(f"Error loading audio file: {e}")
return np.zeros(13)
if len(y) == 0:
return np.zeros(13)
try:
pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
pitches = pitches[pitches > 0]
pitch_mean = np.mean(pitches) if len(pitches) > 0 else 0
pitch_std = np.std(pitches) if len(pitches) > 0 else 0
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)
spectral_centroid_mean = np.mean(spectral_centroid)
spectral_centroid_std = np.mean(spectral_centroid)
zcr = librosa.feature.zero_crossing_rate(y)
zcr_mean = np.mean(zcr)
zcr_std = np.mean(zcr)
rms = librosa.feature.rms(y=y)
rms_mean = np.mean(rms)
rms_std = np.mean(rms)
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr, roll_percent=0.85)
spectral_rolloff_mean = np.mean(spectral_rolloff)
spectral_rolloff_std = np.mean(spectral_rolloff)
hop_length = 512
duration = librosa.get_duration(y=y, sr=sr)
voiced_frames = librosa.effects.split(y, top_db=20)
speaking_rate = len(voiced_frames) / duration if duration > 0 else 0
try:
sound = parselmouth.Sound(audio_path)
pitch = call(sound, "To Pitch", 0.0, 75, 600)
harmonicity = call(sound, "To Harmonicity (cc)", 0.01, 75, 0.1, 1.0)
hnr_values = []
for time in pitch.ts():
harmonicity_value = call(harmonicity, "Get value at time", time, "Linear")
if not np.isnan(harmonicity_value):
hnr_values.append(harmonicity_value)
hnr_mean = sum(hnr_values) / len(hnr_values) if len(hnr_values) > 0 else 0
hnr_std = np.std(hnr_values) if len(hnr_values) > 1 else 0
except Exception as e:
print(f"Error calculating HNR: {e}")
hnr_mean = 0
hnr_std = 0
feature_vector = np.array([
pitch_mean, pitch_std,
spectral_centroid_mean, spectral_centroid_std,
zcr_mean, zcr_std,
rms_mean, rms_std,
spectral_rolloff_mean, spectral_rolloff_std,
speaking_rate,
hnr_mean, hnr_std
])
scaled_features = self.scaler.transform(feature_vector.reshape(1, -1))[0]
return scaled_features
except Exception as e:
print(f"Error extracting features: {e}")
return np.zeros(13)
def predict_hate_speech(audio_path):
state_dict = torch.load("hate_speech_hubert_audio_classifier.pth", map_location=torch.device('cpu'))
model = HuBERTHateSpeechClassifier(13, 2)
model.load_state_dict(state_dict)
feature_extractor = AudioFeatureExtractor()
features = feature_extractor.extract_features(audio_path)
input_tensor = torch.tensor(features, dtype=torch.float32).unsqueeze(0)
with torch.no_grad():
outputs = model(input_tensor)
probabilities = torch.softmax(outputs, dim=1)
predicted_class = torch.argmax(probabilities, dim=1).item()
confidence = probabilities[0][predicted_class].item()
if confidence > 0.6 and predicted_class == 1:
result = {
"Classification": "Hate Speech",
"Confidence": confidence
}
else:
if confidence < 0.5 and predicted_class == 1:
confidence = 1 - confidence
result = {
"Classification": "Non-Hate Speech",
"Confidence": confidence
}
return result
iface = gr.Interface(
fn=predict_hate_speech,
inputs=gr.Audio(type="filepath", label="Upload Audio"),
outputs=gr.Textbox(label="Hate Speech Analysis"),
title="Hate Speech Audio Classifier",
description="Upload an audio file to detect potential hate speech content.",
examples=[
["hate_video_3_3_snippet2.wav"]
],
allow_flagging="manual"
)
if __name__ == "__main__":
iface.launch()
|