Spaces:
Sleeping
Sleeping
File size: 1,849 Bytes
4593d5d 9fff2e5 4593d5d 113622c 4593d5d 7a53eba 113622c 4593d5d 7a53eba 84e881d 7a53eba 4593d5d 113622c 9c28001 4593d5d cb6ff81 4593d5d cb6ff81 7a53eba 4593d5d 7a53eba 4593d5d 1eff44d 4593d5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import easyocr
from gradio_client import Client, handle_file
import pandas as pd
import gradio as gr
clientImg = Client("dj-dawgs-ipd/IPD-Image-ViT-Finetune")
clientEngText = Client("dj-dawgs-ipd/IPD-Text-English-Finetune")
clientHingText = Client("dj-dawgs-ipd/IPD-Text-Hinglish")
profanity_df = pd.read_csv('Hinglish_Profanity_List.csv' , encoding = 'utf-8')
profanity_hn = profanity_df['profanity_hn']
def extract_text(image):
reader = easyocr.Reader(['en'])
data = [result[1] for result in reader.readtext(image)]
return ' '.join([l for l in data])
def predict(image):
imgResult = clientImg.predict(
image=handle_file(image),
api_name="/predict"
)
label , confidence = imgResult[0]['label'] , float(imgResult[1]['label'])
if confidence > 0.90:
return ["hate" , label]
else:
ocr_text = extract_text(image).lower()
engResult = clientEngText.predict(
text=ocr_text,
api_name="/classify_text"
)
hingResult = clientHingText.predict(
text=ocr_text,
api_name="/predict"
)
profanityFound = any(word in text.split() for word in profanity_hn)
if not profanityFound and (engResult[0] == "NEITHER" or hingResult[0] == "NAG"):
return ["not_hate" , "No Hate Symbols Detected"]
else:
return ["hate" , "No Hate Symbols Detected"]
iface = gr.Interface(fn=predict,
inputs = gr.Image(type='filepath'),
outputs=[gr.Label(label = "Class") , gr.Label(label = "Hate Symbol(if any)")],
title = "Hate Speech Detection in Image",
description = "Detect hateful symbols or text in Image"
)
if __name__ == "__main__":
iface.launch()
|