siddhantuniyal's picture
feat: change profanityFound syntax
ab650c6 verified
raw
history blame
2.99 kB
import easyocr
from gradio_client import Client, handle_file
import pandas as pd
import gradio as gr
clientImg = Client("dj-dawgs-ipd/IPD-Image-ViT-Finetune")
clientEngText = Client("dj-dawgs-ipd/IPD-Text-English-Finetune")
clientHingText = Client("dj-dawgs-ipd/IPD-Text-Hinglish")
profanity_df = pd.read_csv('Hinglish_Profanity_List.csv' , encoding = 'utf-8')
profanity_hn = profanity_df['profanity_hn']
def extract_text(image):
reader = easyocr.Reader(['en'])
data = [result[1] for result in reader.readtext(image)]
return ' '.join([l for l in data])
def predict(image):
imgResult = clientImg.predict(
image=handle_file(image),
api_name="/predict"
)
label , confidence = imgResult[0]['label'] , float(imgResult[1]['label'])
if (label == 'finger_gun_to_the_head' and confidence > 0.98) or (label != 'finger_gun_to_the_head' and confidence > 0.95):
return {
"prediction" : "hate",
"language" : None,
"label" : label,
"confidence" : confidence,
"hate_text" : None
}
else:
ocr_text = extract_text(image).lower()
engResult = clientEngText.predict(
text=ocr_text[:200],
api_name="/predict"
)
hingResult = clientHingText.predict(
text=ocr_text[:200],
api_name="/predict"
)
profanityFound = [word for word in ocr_text.split() if word in profanity_hn]
if len(profanityFound) > 0:
return {
"prediction" : "hate",
"language" : "Hindi",
"label" : "Profanity Found",
"confidence" : None,
"hate_text" : profanityFound
}
elif engResult[0] != "NEITHER" and engResult[1] > 0.5:
return {
"prediction" : "hate",
"language" : "English",
"label" : engResult[0],
"confidence" : engResult[1],
"hate_text" : ocr_text[:200]
}
elif hingResult[0] != "NAG" and hingResult[1] > 0.5:
return {
"prediction" : "hate",
"language" : "Hinglish",
"label" : hingResult[0],
"confidence" : hingResult[1],
"hate_text" : ocr_text[:200]
}
else:
return {
"prediction" : "not_hate",
"language" : None,
"label" : "No hate found, yay!",
"confidence" : None,
"hate_text" : None
}
iface = gr.Interface(fn=predict,
inputs = gr.Image(type='filepath'),
outputs=gr.JSON(),
title = "Hate Speech Detection in Image",
description = "Detect hateful symbols or text in Image"
)
if __name__ == "__main__":
iface.launch()