import easyocr from gradio_client import Client, handle_file import pandas as pd import gradio as gr clientImg = Client("dj-dawgs-ipd/IPD-Image-ViT-Finetune") clientEngText = Client("dj-dawgs-ipd/IPD-Text-English-Finetune") clientHingText = Client("dj-dawgs-ipd/IPD-Text-Hinglish") profanity_df = pd.read_csv('Hinglish_Profanity_List.csv' , encoding = 'utf-8') profanity_hn = profanity_df['profanity_hn'] def extract_text(image): reader = easyocr.Reader(['en']) data = [result[1] for result in reader.readtext(image)] return ' '.join([l for l in data]) def predict(image): imgResult = clientImg.predict( image=handle_file(image), api_name="/predict" ) label , confidence = imgResult[0]['label'] , float(imgResult[1]['label']) if confidence > 0.90: return ["hate" , label] else: ocr_text = extract_text(image).lower() engResult = clientEngText.predict( text=ocr_text, api_name="/classify_text" ) hingResult = clientHingText.predict( text=ocr_text, api_name="/predict" ) profanityFound = any(word in text.split() for word in profanity_hn) if not profanityFound and (engResult[0] == "NEITHER" or hingResult[0] == "NAG"): return ["not_hate" , "No Hate Symbols Detected"] else: return ["hate" , "No Hate Symbols Detected"] iface = gr.Interface(fn=predict, inputs = gr.Image(type='filepath'), outputs=[gr.Label(label = "Class") , gr.Label(label = "Hate Symbol(if any)")], title = "Hate Speech Detection in Image", description = "Detect hateful symbols or text in Image" ) if __name__ == "__main__": iface.launch()