import easyocr from gradio_client import Client, handle_file import pandas as pd import gradio as gr clientImg = Client("dj-dawgs-ipd/IPD-Image-ViT-Finetune") clientEngText = Client("dj-dawgs-ipd/IPD-Text-English-Finetune") clientHingText = Client("dj-dawgs-ipd/IPD-Text-Hinglish") profanity_df = pd.read_csv('Hinglish_Profanity_List.csv' , encoding = 'utf-8') profanity_hn = profanity_df['profanity_hn'] def extract_text(image): reader = easyocr.Reader(['en']) data = [result[1] for result in reader.readtext(image)] return ' '.join([l for l in data]) def predict(image): imgResult = clientImg.predict( image=handle_file(image), api_name="/predict" ) label , confidence = imgResult[0]['label'] , float(imgResult[1]['label']) if confidence > 0.95: return ["hate" , f"label: {label}, confidence: {confidence}"] else: ocr_text = extract_text(image).lower() engResult = clientEngText.predict( text=ocr_text, api_name="/predict" ) hingResult = clientHingText.predict( text=ocr_text, api_name="/predict" ) profanityFound = any(word in ocr_text.split() for word in profanity_hn) if profanityFound: return ["hate", "Profanity Found"] elif engResult[0] != "NEITHER" or engResult[1] < 0.5: return ["hate", f"Result: {engResult}, Text: {ocr_text}"] elif hingResult[0] != "NAG" or hingResult[1] < 0.5: return ["hate", f"Result: {hingResult}, Text: {ocr_text}"] else: return ["not_hate", "No hate found, yay!"] # if not profanityFound and engResult[0] == "NEITHER" and hingResult[0] == "NAG": # return ["not_hate" , "No Hate Symbols Detected"] # else: # return ["hate" , "No Hate Symbols Detected"] iface = gr.Interface(fn=predict, inputs = gr.Image(type='filepath'), outputs=[gr.Label(label = "Class (hate or not_hate)") , gr.Label(label = "Explanation")], title = "Hate Speech Detection in Image", description = "Detect hateful symbols or text in Image" ) if __name__ == "__main__": iface.launch()