import easyocr from gradio_client import Client, handle_file import pandas as pd import gradio as gr clientImg = Client("dj-dawgs-ipd/IPD-Image-ViT-Finetune") clientEngText = Client("dj-dawgs-ipd/IPD-Text-English-Finetune") clientHingText = Client("dj-dawgs-ipd/IPD-Text-Hinglish") profanity_df = pd.read_csv('Hinglish_Profanity_List.csv' , encoding = 'utf-8') profanity_hn = profanity_df['profanity_hn'] def extract_text(image): reader = easyocr.Reader(['en']) data = [result[1] for result in reader.readtext(image)] return ' '.join([l for l in data]) def predict(image): imgResult = clientImg.predict( image=handle_file(image), api_name="/predict" ) label , confidence = imgResult[0]['label'] , float(imgResult[1]['label']) if (label == 'finger_gun_to_the_head' and confidence > 0.98) or (label != 'finger_gun_to_the_head' and confidence > 0.95): return { "prediction" : "hate", "language" : None, "label" : label, "confidence" : confidence, "hate_text" : None } else: ocr_text = extract_text(image).lower() engResult = clientEngText.predict( text=ocr_text[:200], api_name="/predict" ) hingResult = clientHingText.predict( text=ocr_text[:200], api_name="/predict" ) profanityFound = [word for word in ocr_text.split() if word in profanity_hn] if len(profanityFound) > 0: return { "prediction" : "hate", "language" : "Hindi", "label" : "Profanity Found", "confidence" : None, "hate_text" : profanityFound } elif engResult[0] != "NEITHER" and engResult[1] > 0.5: return { "prediction" : "hate", "language" : "English", "label" : engResult[0], "confidence" : engResult[1], "hate_text" : ocr_text[:200] } elif hingResult[0] != "NAG" and hingResult[1] > 0.5: return { "prediction" : "hate", "language" : "Hinglish", "label" : hingResult[0], "confidence" : hingResult[1], "hate_text" : ocr_text[:200] } else: return { "prediction" : "not_hate", "language" : None, "label" : "No hate found, yay!", "confidence" : None, "hate_text" : None } iface = gr.Interface(fn=predict, inputs = gr.Image(type='filepath'), outputs=gr.JSON(), title = "Hate Speech Detection in Image", description = "Detect hateful symbols or text in Image" ) if __name__ == "__main__": iface.launch()