Spaces:
Sleeping
Sleeping
File size: 4,939 Bytes
3bbf2c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
from tortoise.models.arch_util import AttentionBlock
from tortoise.models.xtransformers import ContinuousTransformerWrapper, Encoder
def exists(val):
return val is not None
def masked_mean(t, mask):
t = t.masked_fill(~mask, 0.0)
return t.sum(dim=1) / mask.sum(dim=1)
class CollapsingTransformer(nn.Module):
def __init__(
self,
model_dim,
output_dims,
heads,
dropout,
depth,
mask_percentage=0,
**encoder_kwargs
):
super().__init__()
self.transformer = ContinuousTransformerWrapper(
max_seq_len=-1,
use_pos_emb=False,
attn_layers=Encoder(
dim=model_dim,
depth=depth,
heads=heads,
ff_dropout=dropout,
ff_mult=1,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
**encoder_kwargs,
),
)
self.pre_combiner = nn.Sequential(
nn.Conv1d(model_dim, output_dims, 1),
AttentionBlock(output_dims, num_heads=heads, do_checkpoint=False),
nn.Conv1d(output_dims, output_dims, 1),
)
self.mask_percentage = mask_percentage
def forward(self, x, **transformer_kwargs):
h = self.transformer(x, **transformer_kwargs)
h = h.permute(0, 2, 1)
h = self.pre_combiner(h).permute(0, 2, 1)
if self.training:
mask = torch.rand_like(h.float()) > self.mask_percentage
else:
mask = torch.ones_like(h.float()).bool()
return masked_mean(h, mask)
class ConvFormatEmbedding(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self.emb = nn.Embedding(*args, **kwargs)
def forward(self, x):
y = self.emb(x)
return y.permute(0, 2, 1)
class CVVP(nn.Module):
def __init__(
self,
model_dim=512,
transformer_heads=8,
dropout=0.1,
conditioning_enc_depth=8,
cond_mask_percentage=0,
mel_channels=80,
mel_codes=None,
speech_enc_depth=8,
speech_mask_percentage=0,
latent_multiplier=1,
):
super().__init__()
latent_dim = latent_multiplier * model_dim
self.temperature = nn.Parameter(torch.tensor(1.0))
self.cond_emb = nn.Sequential(
nn.Conv1d(mel_channels, model_dim // 2, kernel_size=5, stride=2, padding=2),
nn.Conv1d(model_dim // 2, model_dim, kernel_size=3, stride=2, padding=1),
)
self.conditioning_transformer = CollapsingTransformer(
model_dim,
model_dim,
transformer_heads,
dropout,
conditioning_enc_depth,
cond_mask_percentage,
)
self.to_conditioning_latent = nn.Linear(latent_dim, latent_dim, bias=False)
if mel_codes is None:
self.speech_emb = nn.Conv1d(
mel_channels, model_dim, kernel_size=5, padding=2
)
else:
self.speech_emb = ConvFormatEmbedding(mel_codes, model_dim)
self.speech_transformer = CollapsingTransformer(
model_dim,
latent_dim,
transformer_heads,
dropout,
speech_enc_depth,
speech_mask_percentage,
)
self.to_speech_latent = nn.Linear(latent_dim, latent_dim, bias=False)
def get_grad_norm_parameter_groups(self):
return {
"conditioning": list(self.conditioning_transformer.parameters()),
"speech": list(self.speech_transformer.parameters()),
}
def forward(self, mel_cond, mel_input, return_loss=False):
cond_emb = self.cond_emb(mel_cond).permute(0, 2, 1)
enc_cond = self.conditioning_transformer(cond_emb)
cond_latents = self.to_conditioning_latent(enc_cond)
speech_emb = self.speech_emb(mel_input).permute(0, 2, 1)
enc_speech = self.speech_transformer(speech_emb)
speech_latents = self.to_speech_latent(enc_speech)
cond_latents, speech_latents = map(
lambda t: F.normalize(t, p=2, dim=-1), (cond_latents, speech_latents)
)
temp = self.temperature.exp()
if not return_loss:
sim = einsum("n d, n d -> n", cond_latents, speech_latents) * temp
return sim
sim = einsum("i d, j d -> i j", cond_latents, speech_latents) * temp
labels = torch.arange(cond_latents.shape[0], device=mel_input.device)
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
return loss
if __name__ == "__main__":
clvp = CVVP()
clvp(torch.randn(2, 80, 100), torch.randn(2, 80, 95), return_loss=True)
|