File size: 11,610 Bytes
4408097
 
b794742
 
4408097
b794742
4408097
b794742
 
 
 
 
 
238dfd8
b794742
 
 
4408097
b794742
 
 
 
 
 
4408097
b794742
 
 
 
 
d2eb80b
b794742
 
be38e20
b794742
 
 
 
4408097
b794742
 
 
 
 
 
4408097
b794742
 
 
 
 
 
4408097
b794742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c96db
537d84b
 
77c96db
537d84b
 
77c96db
238dfd8
 
 
b794742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c96db
b794742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4408097
b794742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4408097
 
b794742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import os
import shutil
from pathlib import Path

import streamlit as st
from random import randint

from tortoise.api import MODELS_DIR
from tortoise.inference import (
    infer_on_texts,
    run_and_save_tts,
    split_and_recombine_text,
)
from tortoise.api import TextToSpeech
from tortoise.utils.diffusion import SAMPLERS
from app_utils.filepicker import st_file_selector
from app_utils.conf import TortoiseConfig

from app_utils.funcs import (
    timeit,
    load_model,
    list_voices,
    load_voice_conditionings,
)

LATENT_MODES = [
    "Tortoise original (bad)",
    "average per 4.27s (broken on small files)",
    "average per voice file (broken on small files)",
]

def main():
    conf = TortoiseConfig()
    voice_samples, conditioning_latents = None, None
    with st.expander("Create New Voice", expanded=True):
        if "file_uploader_key" not in st.session_state:
            st.session_state["file_uploader_key"] = str(randint(1000, 100000000))
            st.session_state["text_input_key"] = str(randint(1000, 100000000))

        uploaded_files = st.file_uploader(
            "Upload Audio Samples for a New Voice",
            accept_multiple_files=True,
            type=["wav"],
            key=st.session_state["file_uploader_key"]
        )

        voice_name = st.text_input(
            "New Voice Name",
            help="Enter a name for your new voice.",
            value="",
            key=st.session_state["text_input_key"]
        )

        create_voice_button = st.button(
            "Create Voice",
            disabled = ((voice_name.strip() == "") | (len(uploaded_files) == 0))
        )
        if create_voice_button:
            st.write(st.session_state)
            with st.spinner(f"Creating new voice: {voice_name}"):
                new_voice_name = voice_name.strip().replace(" ", "_")

                voices_dir = f'./tortoise/voices/{new_voice_name}/'
                if os.path.exists(voices_dir):
                    shutil.rmtree(voices_dir)
                os.makedirs(voices_dir)

                for index, uploaded_file in enumerate(uploaded_files):
                    bytes_data = uploaded_file.read()
                    with open(f"{voices_dir}voice_sample{index}.wav", "wb") as wav_file:
                        wav_file.write(bytes_data)

                # # Generate conditioning latents and samples here
                # voice_samples, conditioning_latents = generate_conditioning(voices_dir)

                # # Save the conditioning latents and samples
                # save_conditioning(voices_dir, voice_samples, conditioning_latents)

                voice_samples, conditioning_latents = TextToSpeech.get_conditioning_latents(new_voice_name)
                print(voice_samples, conditioning_latents)

                st.session_state["text_input_key"] = str(randint(1000, 100000000))
                st.session_state["file_uploader_key"] = str(randint(1000, 100000000))
                st.experimental_rerun()

    text = st.text_area(
        "Text",
        help="Text to speak.",
        value="The expressiveness of autoregressive transformers is literally nuts! I absolutely adore them.",
    )

    voices = [v for v in os.listdir("tortoise/voices") if v != "cond_latent_example"]

    voice = st.selectbox(
        "Voice",
        voices,
        help="Selects the voice to use for generation. See options in voices/ directory (and add your own!) "
        "Use the & character to join two voices together. Use a comma to perform inference on multiple voices.",
        index=0,
    )
    preset = st.selectbox(
        "Preset",
        (
            "single_sample",
            "ultra_fast",
            "very_fast",
            "ultra_fast_old",
            "fast",
            "standard",
            "high_quality",
        ),
        help="Which voice preset to use.",
        index=1,
    )
    
    with st.expander("Advanced"):
        col1, col2 = st.columns(2)
        with col1:
            """#### Model parameters"""
            candidates = st.number_input(
                "Candidates",
                help="How many output candidates to produce per-voice.",
                value=1,
            )
            latent_averaging_mode = st.radio(
                "Latent averaging mode",
                LATENT_MODES,
                help="How voice samples should be averaged together.",
                index=0,
            )
            sampler = st.radio(
                "Sampler",
                ["dpm++2m", "p", "ddim"],
                help="Diffusion sampler. Note that dpm++2m is experimental and typically requires more steps.",
                index=1,
            )
            steps = st.number_input(
                "Steps",
                help="Override the steps used for diffusion (default depends on preset)",
                value=10,
            )
            seed = st.number_input(
                "Seed",
                help="Random seed which can be used to reproduce results.",
                value=-1,
            )
            if seed == -1:
                seed = None
            voice_fixer = st.checkbox(
                "Voice fixer",
                help="Use `voicefixer` to improve audio quality. This is a post-processing step which can be applied to any output.",
                value=True,
            )
            """#### Directories"""
            output_path = st.text_input(
                "Output Path", help="Where to store outputs.", value="results/"
            )

        with col2:
            """#### Optimizations"""
            high_vram = not st.checkbox(
                "Low VRAM",
                help="Re-enable default offloading behaviour of tortoise",
                value=True,
            )
            half = st.checkbox(
                "Half-Precision",
                help="Enable autocast to half precision for autoregressive model",
                value=False,
            )
            kv_cache = st.checkbox(
                "Key-Value Cache",
                help="Enable kv_cache usage, leading to drastic speedups but worse memory usage",
                value=True,
            )
            cond_free = st.checkbox(
                "Conditioning Free",
                help="Force conditioning free diffusion",
                value=True,
            )
            no_cond_free = st.checkbox(
                "Force Not Conditioning Free",
                help="Force disable conditioning free diffusion",
                value=False,
            )

            """#### Text Splitting"""
            min_chars_to_split = st.number_input(
                "Min Chars to Split",
                help="Minimum number of characters to split text on",
                min_value=50,
                value=200,
                step=1,
            )

            """#### Debug"""
            produce_debug_state = st.checkbox(
                "Produce Debug State",
                help="Whether or not to produce debug_state.pth, which can aid in reproducing problems. Defaults to true.",
                value=True,
            )

    ar_checkpoint = "."
    diff_checkpoint = "." 
    if st.button("Update Basic Settings"):
        conf.update(
            EXTRA_VOICES_DIR=extra_voices_dir,
            LOW_VRAM=not high_vram,
            AR_CHECKPOINT=ar_checkpoint,
            DIFF_CHECKPOINT=diff_checkpoint,
        )

    ar_checkpoint = None
    diff_checkpoint = None
    tts = load_model(MODELS_DIR, high_vram, kv_cache, ar_checkpoint, diff_checkpoint)

    if st.button("Start"):
        assert latent_averaging_mode
        assert preset
        assert voice

        def show_generation(fp, filename: str):
            """
            audio_buffer = BytesIO()
            save_gen_with_voicefix(g, audio_buffer, squeeze=False)
            torchaudio.save(audio_buffer, g, 24000, format='wav')
            """
            st.audio(str(fp), format="audio/wav")
            st.download_button(
                "Download sample",
                str(fp),
                file_name=filename,  # this doesn't actually seem to work lol
            )

        with st.spinner(
            f"Generating {candidates} candidates for voice {voice} (seed={seed}). You can see progress in the terminal"
        ):
            os.makedirs(output_path, exist_ok=True)

            selected_voices = voice.split(",")
            for k, selected_voice in enumerate(selected_voices):
                if "&" in selected_voice:
                    voice_sel = selected_voice.split("&")
                else:
                    voice_sel = [selected_voice]
                voice_samples, conditioning_latents = load_voice_conditionings(
                    voice_sel, []
                )

                voice_path = Path(os.path.join(output_path, selected_voice))

                with timeit(
                    f"Generating {candidates} candidates for voice {selected_voice} (seed={seed})"
                ):
                    nullable_kwargs = {
                        k: v
                        for k, v in zip(
                            ["sampler", "diffusion_iterations", "cond_free"],
                            [sampler, steps, cond_free],
                        )
                        if v is not None
                    }

                    def call_tts(text: str):
                        return tts.tts_with_preset(
                            text,
                            k=candidates,
                            voice_samples=voice_samples,
                            conditioning_latents=conditioning_latents,
                            preset=preset,
                            use_deterministic_seed=seed,
                            return_deterministic_state=True,
                            cvvp_amount=0.0,
                            half=half,
                            latent_averaging_mode=LATENT_MODES.index(
                                latent_averaging_mode
                            ),
                            **nullable_kwargs,
                        )

                    if len(text) < min_chars_to_split:
                        filepaths = run_and_save_tts(
                            call_tts,
                            text,
                            voice_path,
                            return_deterministic_state=True,
                            return_filepaths=True,
                            voicefixer=voice_fixer,
                        )
                        for i, fp in enumerate(filepaths):
                            show_generation(fp, f"{selected_voice}-text-{i}.wav")
                    else:
                        desired_length = int(min_chars_to_split)
                        texts = split_and_recombine_text(
                            text, desired_length, desired_length + 100
                        )
                        filepaths = infer_on_texts(
                            call_tts,
                            texts,
                            voice_path,
                            return_deterministic_state=True,
                            return_filepaths=True,
                            lines_to_regen=set(range(len(texts))),
                            voicefixer=voice_fixer,
                        )
                        for i, fp in enumerate(filepaths):
                            show_generation(fp, f"{selected_voice}-text-{i}.wav")
        if produce_debug_state:
            """Debug states can be found in the output directory"""


if __name__ == "__main__":
    main()