Spaces:
Running
Running
File size: 2,597 Bytes
54c67a0 db268fd 5e8afa4 54c67a0 db268fd dfcab2b 5e8afa4 54c67a0 d2eb80b b9832f1 54c67a0 5e8afa4 be38e20 54c67a0 db268fd d2eb80b 5e8afa4 be38e20 d2eb80b d89e354 d2eb80b 5e8afa4 ffdeba9 afed6d0 54c67a0 18b79fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# Use an official Python runtime as a parent image
FROM python:3.8-slim
COPY --chown=user --from=stage /home/user/.cache /home/user/.cache
# Set the working directory to /app
WORKDIR /app
# Copy the current directory contents into the container at /app
COPY . /app
RUN pip install bump-pydantic
RUN bump-pydantic tortoise/models/config.py --set version 2.0.0
RUN apt-get update -y
RUN apt-get install -y python-gdbm
# Install any needed packages specified in requirements.txt
RUN pip install --trusted-host pypi.python.org -r requirements.txt && \
pip uninstall transformers && \
pip install transformers==4.29.2
# RUN --mount=type=cache,target=/home/user/.cache/
# Make port 80 available to the world outside this container
EXPOSE 80
# Set the TORTOISE_MODELS_DIR environment variable
# ENV TORTOISE_MODELS_DIR tortoise/models/pretrained_models
# Create the directory for pretrained models
# RUN mkdir -p $TORTOISE_MODELS_DIR
# RUN echo "Downloading models through docker container..."
# # Download all the models
# RUN wget -O $TORTOISE_MODELS_DIR/autoregressive.pth https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth && \
# wget -O $TORTOISE_MODELS_DIR/classifier.pth https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth && \
# wget -O $TORTOISE_MODELS_DIR/clvp2.pth https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth && \
# wget -O $TORTOISE_MODELS_DIR/cvvp.pth https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/cvvp.pth && \
# wget -O $TORTOISE_MODELS_DIR/diffusion_decoder.pth https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth && \
# wget -O $TORTOISE_MODELS_DIR/vocoder.pth https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth && \
# wget -O $TORTOISE_MODELS_DIR/rlg_auto.pth https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth && \
# wget -O $TORTOISE_MODELS_DIR/rlg_diffuser.pth https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth && \
# wget -O $TORTOISE_MODELS_DIR/bigvgan_base_24khz_100band_g.pth https://drive.google.com/uc?id=1_cKskUDuvxQJUEBwdgjAxKuDTUW6kPdY && \
# wget -O $TORTOISE_MODELS_DIR/bigvgan_24khz_100band_g.pth https://drive.google.com/uc?id=1wmP_mAs7d00KHVfVEl8B5Gb72Kzpcavp
# RUN echo "Finished downloading models through docker container..."
RUN echo "Current directory contents:"
RUN ls -la
# Run app.py when the container launches
CMD ["streamlit","run", "app.py"]
|