Spaces:
Running
Running
File size: 16,676 Bytes
3bbf2c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import math
import random
from abc import abstractmethod
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autocast
from tortoise.models.arch_util import AttentionBlock, normalization
def is_latent(t):
return t.dtype == torch.float
def is_sequence(t):
return t.dtype == torch.long
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
class TimestepBlock(nn.Module):
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
def forward(self, x, emb):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
else:
x = layer(x)
return x
class ResBlock(TimestepBlock):
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
dims=2,
kernel_size=3,
efficient_config=True,
use_scale_shift_norm=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_scale_shift_norm = use_scale_shift_norm
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
eff_kernel = 1 if efficient_config else 3
eff_padding = 0 if efficient_config else 1
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
nn.Conv1d(channels, self.out_channels, eff_kernel, padding=eff_padding),
)
self.emb_layers = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
nn.Conv1d(
self.out_channels, self.out_channels, kernel_size, padding=padding
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
else:
self.skip_connection = nn.Conv1d(
channels, self.out_channels, eff_kernel, padding=eff_padding
)
def forward(self, x, emb):
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class DiffusionLayer(TimestepBlock):
def __init__(self, model_channels, dropout, num_heads):
super().__init__()
self.resblk = ResBlock(
model_channels,
model_channels,
dropout,
model_channels,
dims=1,
use_scale_shift_norm=True,
)
self.attn = AttentionBlock(
model_channels, num_heads, relative_pos_embeddings=True
)
def forward(self, x, time_emb):
y = self.resblk(x, time_emb)
return self.attn(y)
class DiffusionTts(nn.Module):
def __init__(
self,
model_channels=512,
num_layers=8,
in_channels=100,
in_latent_channels=512,
in_tokens=8193,
out_channels=200, # mean and variance
dropout=0,
use_fp16=False,
num_heads=16,
# Parameters for regularization.
layer_drop=0.1,
unconditioned_percentage=0.1, # This implements a mechanism similar to what is used in classifier-free training.
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.dropout = dropout
self.num_heads = num_heads
self.unconditioned_percentage = unconditioned_percentage
self.enable_fp16 = use_fp16
self.layer_drop = layer_drop
self.inp_block = nn.Conv1d(in_channels, model_channels, 3, 1, 1)
self.time_embed = nn.Sequential(
nn.Linear(model_channels, model_channels),
nn.SiLU(),
nn.Linear(model_channels, model_channels),
)
# Either code_converter or latent_converter is used, depending on what type of conditioning data is fed.
# This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally
# complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive
# transformer network.
self.code_embedding = nn.Embedding(in_tokens, model_channels)
self.code_converter = nn.Sequential(
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
)
self.code_norm = normalization(model_channels)
self.latent_conditioner = nn.Sequential(
nn.Conv1d(in_latent_channels, model_channels, 3, padding=1),
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
)
self.contextual_embedder = nn.Sequential(
nn.Conv1d(in_channels, model_channels, 3, padding=1, stride=2),
nn.Conv1d(model_channels, model_channels * 2, 3, padding=1, stride=2),
AttentionBlock(
model_channels * 2,
num_heads,
relative_pos_embeddings=True,
do_checkpoint=False,
),
AttentionBlock(
model_channels * 2,
num_heads,
relative_pos_embeddings=True,
do_checkpoint=False,
),
AttentionBlock(
model_channels * 2,
num_heads,
relative_pos_embeddings=True,
do_checkpoint=False,
),
AttentionBlock(
model_channels * 2,
num_heads,
relative_pos_embeddings=True,
do_checkpoint=False,
),
AttentionBlock(
model_channels * 2,
num_heads,
relative_pos_embeddings=True,
do_checkpoint=False,
),
)
self.unconditioned_embedding = nn.Parameter(torch.randn(1, model_channels, 1))
self.conditioning_timestep_integrator = TimestepEmbedSequential(
DiffusionLayer(model_channels, dropout, num_heads),
DiffusionLayer(model_channels, dropout, num_heads),
DiffusionLayer(model_channels, dropout, num_heads),
)
self.integrating_conv = nn.Conv1d(
model_channels * 2, model_channels, kernel_size=1
)
self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1)
self.layers = nn.ModuleList(
[
DiffusionLayer(model_channels, dropout, num_heads)
for _ in range(num_layers)
]
+ [
ResBlock(
model_channels,
model_channels,
dropout,
dims=1,
use_scale_shift_norm=True,
)
for _ in range(3)
]
)
self.out = nn.Sequential(
normalization(model_channels),
nn.SiLU(),
nn.Conv1d(model_channels, out_channels, 3, padding=1),
)
def get_grad_norm_parameter_groups(self):
groups = {
"minicoder": list(self.contextual_embedder.parameters()),
"layers": list(self.layers.parameters()),
"code_converters": list(self.code_embedding.parameters())
+ list(self.code_converter.parameters())
+ list(self.latent_conditioner.parameters())
+ list(self.latent_conditioner.parameters()),
"timestep_integrator": list(
self.conditioning_timestep_integrator.parameters()
)
+ list(self.integrating_conv.parameters()),
"time_embed": list(self.time_embed.parameters()),
}
return groups
def get_conditioning(self, conditioning_input):
speech_conditioning_input = (
conditioning_input.unsqueeze(1)
if len(conditioning_input.shape) == 3
else conditioning_input
)
conds = []
for j in range(speech_conditioning_input.shape[1]):
conds.append(self.contextual_embedder(speech_conditioning_input[:, j]))
conds = torch.cat(conds, dim=-1)
conds = conds.mean(dim=-1)
return conds
def timestep_independent(
self,
aligned_conditioning,
conditioning_latent,
expected_seq_len,
return_code_pred,
):
# Shuffle aligned_latent to BxCxS format
if is_latent(aligned_conditioning):
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
cond_scale, cond_shift = torch.chunk(conditioning_latent, 2, dim=1)
if is_latent(aligned_conditioning):
code_emb = self.latent_conditioner(aligned_conditioning)
else:
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1)
code_emb = self.code_converter(code_emb)
code_emb = self.code_norm(code_emb) * (
1 + cond_scale.unsqueeze(-1)
) + cond_shift.unsqueeze(-1)
unconditioned_batches = torch.zeros(
(code_emb.shape[0], 1, 1), device=code_emb.device
)
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = (
torch.rand((code_emb.shape[0], 1, 1), device=code_emb.device)
< self.unconditioned_percentage
)
code_emb = torch.where(
unconditioned_batches,
self.unconditioned_embedding.repeat(
aligned_conditioning.shape[0], 1, 1
),
code_emb,
)
expanded_code_emb = F.interpolate(
code_emb, size=expected_seq_len, mode="nearest"
)
if not return_code_pred:
return expanded_code_emb
else:
mel_pred = self.mel_head(expanded_code_emb)
# Multiply mel_pred by !unconditioned_branches, which drops the gradient on unconditioned branches. This is because we don't want that gradient being used to train parameters through the codes_embedder as it unbalances contributions to that network from the MSE loss.
mel_pred = mel_pred * unconditioned_batches.logical_not()
return expanded_code_emb, mel_pred
def forward(
self,
x,
timesteps,
aligned_conditioning=None,
conditioning_latent=None,
precomputed_aligned_embeddings=None,
conditioning_free=False,
return_code_pred=False,
):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
:param conditioning_latent: a pre-computed conditioning latent; see get_conditioning().
:param precomputed_aligned_embeddings: Embeddings returned from self.timestep_independent()
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
:return: an [N x C x ...] Tensor of outputs.
"""
assert precomputed_aligned_embeddings is not None or (
aligned_conditioning is not None and conditioning_latent is not None
)
assert not (
return_code_pred and precomputed_aligned_embeddings is not None
) # These two are mutually exclusive.
unused_params = []
if conditioning_free:
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
unused_params.extend(
list(self.code_converter.parameters())
+ list(self.code_embedding.parameters())
)
unused_params.extend(list(self.latent_conditioner.parameters()))
else:
if precomputed_aligned_embeddings is not None:
code_emb = precomputed_aligned_embeddings
else:
code_emb, mel_pred = self.timestep_independent(
aligned_conditioning, conditioning_latent, x.shape[-1], True
)
if is_latent(aligned_conditioning):
unused_params.extend(
list(self.code_converter.parameters())
+ list(self.code_embedding.parameters())
)
else:
unused_params.extend(list(self.latent_conditioner.parameters()))
unused_params.append(self.unconditioned_embedding)
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)
x = self.inp_block(x)
x = torch.cat([x, code_emb], dim=1)
x = self.integrating_conv(x)
for i, lyr in enumerate(self.layers):
# Do layer drop where applicable. Do not drop first and last layers.
if (
self.training
and self.layer_drop > 0
and i != 0
and i != (len(self.layers) - 1)
and random.random() < self.layer_drop
):
unused_params.extend(list(lyr.parameters()))
else:
# First and last blocks will have autocast disabled for improved precision.
with autocast(x.device.type, enabled=self.enable_fp16 and i != 0):
x = lyr(x, time_emb)
x = x.float()
out = self.out(x)
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
out = out + extraneous_addition * 0
if return_code_pred:
return out, mel_pred
return out
if __name__ == "__main__":
clip = torch.randn(2, 100, 400)
aligned_latent = torch.randn(2, 388, 512)
aligned_sequence = torch.randint(0, 8192, (2, 100))
cond = torch.randn(2, 100, 400)
ts = torch.LongTensor([600, 600])
model = DiffusionTts(512, layer_drop=0.3, unconditioned_percentage=0.5)
# Test with latent aligned conditioning
# o = model(clip, ts, aligned_latent, cond)
# Test with sequence aligned conditioning
o = model(clip, ts, aligned_sequence, cond)
|