Spaces:
Running
Running
File size: 7,192 Bytes
3bbf2c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
from glob import glob
from typing import Dict, List
import librosa
import numpy as np
import torch
import torchaudio
from scipy.io.wavfile import read
from tortoise.utils.stft import STFT
BUILTIN_VOICES_DIR = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "../voices"
)
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
if data.dtype == np.int32:
norm_fix = 2**31
elif data.dtype == np.int16:
norm_fix = 2**15
elif data.dtype == np.float16 or data.dtype == np.float32:
norm_fix = 1.0
else:
raise NotImplementedError(f"Provided data dtype not supported: {data.dtype}")
return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate)
def check_audio(audio, audiopath: str):
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
if torch.any(audio > 2) or not torch.any(audio < 0):
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
audio.clip_(-1, 1)
def read_audio_file(audiopath: str):
if audiopath[-4:] == ".wav":
audio, lsr = load_wav_to_torch(audiopath)
elif audiopath[-4:] == ".mp3":
audio, lsr = librosa.load(audiopath, sr=None)
audio = torch.FloatTensor(audio)
else:
assert False, f"Unsupported audio format provided: {audiopath[-4:]}"
# Remove any channel data.
if len(audio.shape) > 1:
if audio.shape[0] < 5:
audio = audio[0]
else:
assert audio.shape[1] < 5
audio = audio[:, 0]
return audio, lsr
def load_required_audio(audiopath: str):
audio, lsr = read_audio_file(audiopath)
audios = [
torchaudio.functional.resample(audio, lsr, sampling_rate)
for sampling_rate in (22050, 24000)
]
for audio in audios:
check_audio(audio, audiopath)
return [audio.unsqueeze(0) for audio in audios]
def load_audio(audiopath, sampling_rate):
audio, lsr = read_audio_file(audiopath)
if lsr != sampling_rate:
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
check_audio(audio, audiopath)
return audio.unsqueeze(0)
TACOTRON_MEL_MAX = 2.3143386840820312
TACOTRON_MEL_MIN = -11.512925148010254
def denormalize_tacotron_mel(norm_mel):
return ((norm_mel + 1) / 2) * (
TACOTRON_MEL_MAX - TACOTRON_MEL_MIN
) + TACOTRON_MEL_MIN
def normalize_tacotron_mel(mel):
return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1
def dynamic_range_compression(x, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C
def get_voices(extra_voice_dirs: List[str] = []):
dirs = [BUILTIN_VOICES_DIR] + extra_voice_dirs
voices: Dict[str, List[str]] = {}
for d in dirs:
subs = os.listdir(d)
for sub in subs:
subj = os.path.join(d, sub)
if os.path.isdir(subj):
voices[sub] = (
list(glob(f"{subj}/*.wav"))
+ list(glob(f"{subj}/*.mp3"))
+ list(glob(f"{subj}/*.pth"))
)
return voices
def load_voice(voice: str, extra_voice_dirs: List[str] = []):
if voice == "random":
return None, None
voices = get_voices(extra_voice_dirs)
paths = voices[voice]
if len(paths) == 1 and paths[0].endswith(".pth"):
return None, torch.load(paths[0])
else:
conds = []
for cond_path in paths:
c = load_required_audio(cond_path)
conds.append(c)
return conds, None
def load_voices(voices: List[str], extra_voice_dirs: List[str] = []):
latents = []
clips = []
for voice in voices:
if voice == "random":
if len(voices) > 1:
print(
"Cannot combine a random voice with a non-random voice. Just using a random voice."
)
return None, None
clip, latent = load_voice(voice, extra_voice_dirs)
if latent is None:
assert (
len(latents) == 0
), "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this."
clips.extend(clip)
elif clip is None:
assert (
len(clips) == 0
), "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this."
latents.append(latent)
if len(latents) == 0:
return clips, None
else:
latents_0 = torch.stack([l[0] for l in latents], dim=0).mean(dim=0)
latents_1 = torch.stack([l[1] for l in latents], dim=0).mean(dim=0)
latents = (latents_0, latents_1)
return None, latents
class TacotronSTFT(torch.nn.Module):
def __init__(
self,
filter_length=1024,
hop_length=256,
win_length=1024,
n_mel_channels=80,
sampling_rate=22050,
mel_fmin=0.0,
mel_fmax=8000.0,
):
super(TacotronSTFT, self).__init__()
self.n_mel_channels = n_mel_channels
self.sampling_rate = sampling_rate
self.stft_fn = STFT(filter_length, hop_length, win_length)
from librosa.filters import mel as librosa_mel_fn
mel_basis = librosa_mel_fn(
sr=sampling_rate,
n_fft=filter_length,
n_mels=n_mel_channels,
fmin=mel_fmin,
fmax=mel_fmax,
)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
def spectral_normalize(self, magnitudes):
output = dynamic_range_compression(magnitudes)
return output
def spectral_de_normalize(self, magnitudes):
output = dynamic_range_decompression(magnitudes)
return output
def mel_spectrogram(self, y):
"""Computes mel-spectrograms from a batch of waves
PARAMS
------
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
RETURNS
-------
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
"""
assert torch.min(y.data) >= -10
assert torch.max(y.data) <= 10
y = torch.clip(y, min=-1, max=1)
magnitudes, phases = self.stft_fn.transform(y)
magnitudes = magnitudes.data
mel_output = torch.matmul(self.mel_basis, magnitudes)
mel_output = self.spectral_normalize(mel_output)
return mel_output
def wav_to_univnet_mel(wav, do_normalization=False, device="cuda"):
stft = TacotronSTFT(1024, 256, 1024, 100, 24000, 0, 12000)
stft = stft.to(device)
mel = stft.mel_spectrogram(wav)
if do_normalization:
mel = normalize_tacotron_mel(mel)
return mel
|