Spaces:
Running
Running
import functools | |
import math | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchaudio | |
from tortoise.models.xtransformers import ( | |
ContinuousTransformerWrapper, | |
RelativePositionBias, | |
) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class GroupNorm32(nn.GroupNorm): | |
def forward(self, x): | |
return super().forward(x.float()).type(x.dtype) | |
def normalization(channels): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
groups = 32 | |
if channels <= 16: | |
groups = 8 | |
elif channels <= 64: | |
groups = 16 | |
while channels % groups != 0: | |
groups = int(groups / 2) | |
assert groups > 2 | |
return GroupNorm32(groups, channels) | |
class QKVAttentionLegacy(nn.Module): | |
""" | |
A module which performs QKV attention. Matches legacy QKVAttention + input/output heads shaping | |
""" | |
def __init__(self, n_heads): | |
super().__init__() | |
self.n_heads = n_heads | |
def forward(self, qkv, mask=None, rel_pos=None): | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x (H * C) x T] tensor after attention. | |
""" | |
bs, width, length = qkv.shape | |
assert width % (3 * self.n_heads) == 0 | |
ch = width // (3 * self.n_heads) | |
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = torch.einsum( | |
"bct,bcs->bts", q * scale, k * scale | |
) # More stable with f16 than dividing afterwards | |
if rel_pos is not None: | |
weight = rel_pos( | |
weight.reshape(bs, self.n_heads, weight.shape[-2], weight.shape[-1]) | |
).reshape(bs * self.n_heads, weight.shape[-2], weight.shape[-1]) | |
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
if mask is not None: | |
# The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs. | |
mask = mask.repeat(self.n_heads, 1).unsqueeze(1) | |
weight = weight * mask | |
a = torch.einsum("bts,bcs->bct", weight, v) | |
return a.reshape(bs, -1, length) | |
class AttentionBlock(nn.Module): | |
""" | |
An attention block that allows spatial positions to attend to each other. | |
Originally ported from here, but adapted to the N-d case. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
""" | |
def __init__( | |
self, | |
channels, | |
num_heads=1, | |
num_head_channels=-1, | |
do_checkpoint=True, | |
relative_pos_embeddings=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.do_checkpoint = do_checkpoint | |
if num_head_channels == -1: | |
self.num_heads = num_heads | |
else: | |
assert ( | |
channels % num_head_channels == 0 | |
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" | |
self.num_heads = channels // num_head_channels | |
self.norm = normalization(channels) | |
self.qkv = nn.Conv1d(channels, channels * 3, 1) | |
# split heads before split qkv | |
self.attention = QKVAttentionLegacy(self.num_heads) | |
self.proj_out = zero_module(nn.Conv1d(channels, channels, 1)) | |
if relative_pos_embeddings: | |
self.relative_pos_embeddings = RelativePositionBias( | |
scale=(channels // self.num_heads) ** 0.5, | |
causal=False, | |
heads=num_heads, | |
num_buckets=32, | |
max_distance=64, | |
) | |
else: | |
self.relative_pos_embeddings = None | |
def forward(self, x, mask=None): | |
b, c, *spatial = x.shape | |
x = x.reshape(b, c, -1) | |
qkv = self.qkv(self.norm(x)) | |
h = self.attention(qkv, mask, self.relative_pos_embeddings) | |
h = self.proj_out(h) | |
return (x + h).reshape(b, c, *spatial) | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
""" | |
def __init__(self, channels, use_conv, out_channels=None, factor=4): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.factor = factor | |
if use_conv: | |
ksize = 5 | |
pad = 2 | |
self.conv = nn.Conv1d(self.channels, self.out_channels, ksize, padding=pad) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
x = F.interpolate(x, scale_factor=self.factor, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
""" | |
def __init__(self, channels, use_conv, out_channels=None, factor=4, ksize=5, pad=2): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
stride = factor | |
if use_conv: | |
self.op = nn.Conv1d( | |
self.channels, self.out_channels, ksize, stride=stride, padding=pad | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = nn.AvgPool1d(kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResBlock(nn.Module): | |
def __init__( | |
self, | |
channels, | |
dropout, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
up=False, | |
down=False, | |
kernel_size=3, | |
): | |
super().__init__() | |
self.channels = channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_scale_shift_norm = use_scale_shift_norm | |
padding = 1 if kernel_size == 3 else 2 | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False) | |
self.x_upd = Upsample(channels, False) | |
elif down: | |
self.h_upd = Downsample(channels, False) | |
self.x_upd = Downsample(channels, False) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
nn.Conv1d( | |
self.out_channels, self.out_channels, kernel_size, padding=padding | |
) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = nn.Conv1d( | |
channels, self.out_channels, kernel_size, padding=padding | |
) | |
else: | |
self.skip_connection = nn.Conv1d(channels, self.out_channels, 1) | |
def forward(self, x): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class AudioMiniEncoder(nn.Module): | |
def __init__( | |
self, | |
spec_dim, | |
embedding_dim, | |
base_channels=128, | |
depth=2, | |
resnet_blocks=2, | |
attn_blocks=4, | |
num_attn_heads=4, | |
dropout=0, | |
downsample_factor=2, | |
kernel_size=3, | |
): | |
super().__init__() | |
self.init = nn.Sequential(nn.Conv1d(spec_dim, base_channels, 3, padding=1)) | |
ch = base_channels | |
res = [] | |
for l in range(depth): | |
for r in range(resnet_blocks): | |
res.append(ResBlock(ch, dropout, kernel_size=kernel_size)) | |
res.append( | |
Downsample( | |
ch, use_conv=True, out_channels=ch * 2, factor=downsample_factor | |
) | |
) | |
ch *= 2 | |
self.res = nn.Sequential(*res) | |
self.final = nn.Sequential( | |
normalization(ch), nn.SiLU(), nn.Conv1d(ch, embedding_dim, 1) | |
) | |
attn = [] | |
for a in range(attn_blocks): | |
attn.append( | |
AttentionBlock( | |
embedding_dim, | |
num_attn_heads, | |
) | |
) | |
self.attn = nn.Sequential(*attn) | |
self.dim = embedding_dim | |
def forward(self, x): | |
h = self.init(x) | |
h = self.res(h) | |
h = self.final(h) | |
h = self.attn(h) | |
return h[:, :, 0] | |
DEFAULT_MEL_NORM_FILE = os.path.join( | |
os.path.dirname(os.path.realpath(__file__)), "../data/mel_norms.pth" | |
) | |
class TorchMelSpectrogram(nn.Module): | |
def __init__( | |
self, | |
filter_length=1024, | |
hop_length=256, | |
win_length=1024, | |
n_mel_channels=80, | |
mel_fmin=0, | |
mel_fmax=8000, | |
sampling_rate=22050, | |
normalize=False, | |
mel_norm_file=DEFAULT_MEL_NORM_FILE, | |
): | |
super().__init__() | |
# These are the default tacotron values for the MEL spectrogram. | |
self.filter_length = filter_length | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.n_mel_channels = n_mel_channels | |
self.mel_fmin = mel_fmin | |
self.mel_fmax = mel_fmax | |
self.sampling_rate = sampling_rate | |
self.mel_stft = torchaudio.transforms.MelSpectrogram( | |
n_fft=self.filter_length, | |
hop_length=self.hop_length, | |
win_length=self.win_length, | |
power=2, | |
normalized=normalize, | |
sample_rate=self.sampling_rate, | |
f_min=self.mel_fmin, | |
f_max=self.mel_fmax, | |
n_mels=self.n_mel_channels, | |
norm="slaney", | |
) | |
self.mel_norm_file = mel_norm_file | |
if self.mel_norm_file is not None: | |
self.mel_norms = torch.load(self.mel_norm_file) | |
else: | |
self.mel_norms = None | |
def forward(self, inp): | |
if ( | |
len(inp.shape) == 3 | |
): # Automatically squeeze out the channels dimension if it is present (assuming mono-audio) | |
inp = inp.squeeze(1) | |
assert len(inp.shape) == 2 | |
self.mel_stft = self.mel_stft.to(inp.device) | |
mel = self.mel_stft(inp) | |
# Perform dynamic range compression | |
mel = torch.log(torch.clamp(mel, min=1e-5)) | |
if self.mel_norms is not None: | |
self.mel_norms = self.mel_norms.to(mel.device) | |
mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1) | |
return mel | |
class CheckpointedLayer(nn.Module): | |
""" | |
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses | |
checkpoint for all other args. | |
""" | |
def __init__(self, wrap): | |
super().__init__() | |
self.wrap = wrap | |
def forward(self, x, *args, **kwargs): | |
for k, v in kwargs.items(): | |
assert not ( | |
isinstance(v, torch.Tensor) and v.requires_grad | |
) # This would screw up checkpointing. | |
partial = functools.partial(self.wrap, **kwargs) | |
return partial(x, *args) | |
class CheckpointedXTransformerEncoder(nn.Module): | |
""" | |
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid | |
to channels-last that XTransformer expects. | |
""" | |
def __init__( | |
self, | |
needs_permute=True, | |
exit_permute=True, | |
checkpoint=True, | |
**xtransformer_kwargs, | |
): | |
super().__init__() | |
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs) | |
self.needs_permute = needs_permute | |
self.exit_permute = exit_permute | |
if not checkpoint: | |
return | |
for i in range(len(self.transformer.attn_layers.layers)): | |
n, b, r = self.transformer.attn_layers.layers[i] | |
self.transformer.attn_layers.layers[i] = nn.ModuleList( | |
[n, CheckpointedLayer(b), r] | |
) | |
def forward(self, x, **kwargs): | |
if self.needs_permute: | |
x = x.permute(0, 2, 1) | |
h = self.transformer(x, **kwargs) | |
if self.exit_permute: | |
h = h.permute(0, 2, 1) | |
return h | |