Spaces:
Sleeping
Sleeping
import os | |
import re | |
import inflect | |
import torch | |
from tokenizers import Tokenizer | |
# Regular expression matching whitespace: | |
from unidecode import unidecode | |
_whitespace_re = re.compile(r"\s+") | |
# List of (regular expression, replacement) pairs for abbreviations: | |
_abbreviations = [ | |
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) | |
for x in [ | |
("mrs", "misess"), | |
("mr", "mister"), | |
("dr", "doctor"), | |
("st", "saint"), | |
("co", "company"), | |
("jr", "junior"), | |
("maj", "major"), | |
("gen", "general"), | |
("drs", "doctors"), | |
("rev", "reverend"), | |
("lt", "lieutenant"), | |
("hon", "honorable"), | |
("sgt", "sergeant"), | |
("capt", "captain"), | |
("esq", "esquire"), | |
("ltd", "limited"), | |
("col", "colonel"), | |
("ft", "fort"), | |
] | |
] | |
def expand_abbreviations(text): | |
for regex, replacement in _abbreviations: | |
text = re.sub(regex, replacement, text) | |
return text | |
_inflect = inflect.engine() | |
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])") | |
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)") | |
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)") | |
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)") | |
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)") | |
_number_re = re.compile(r"[0-9]+") | |
def _remove_commas(m): | |
return m.group(1).replace(",", "") | |
def _expand_decimal_point(m): | |
return m.group(1).replace(".", " point ") | |
def _expand_dollars(m): | |
match = m.group(1) | |
parts = match.split(".") | |
if len(parts) > 2: | |
return match + " dollars" # Unexpected format | |
dollars = int(parts[0]) if parts[0] else 0 | |
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 | |
if dollars and cents: | |
dollar_unit = "dollar" if dollars == 1 else "dollars" | |
cent_unit = "cent" if cents == 1 else "cents" | |
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit) | |
elif dollars: | |
dollar_unit = "dollar" if dollars == 1 else "dollars" | |
return "%s %s" % (dollars, dollar_unit) | |
elif cents: | |
cent_unit = "cent" if cents == 1 else "cents" | |
return "%s %s" % (cents, cent_unit) | |
else: | |
return "zero dollars" | |
def _expand_ordinal(m): | |
return _inflect.number_to_words(m.group(0)) | |
def _expand_number(m): | |
num = int(m.group(0)) | |
if num > 1000 and num < 3000: | |
if num == 2000: | |
return "two thousand" | |
elif num > 2000 and num < 2010: | |
return "two thousand " + _inflect.number_to_words(num % 100) | |
elif num % 100 == 0: | |
return _inflect.number_to_words(num // 100) + " hundred" | |
else: | |
return _inflect.number_to_words( | |
num, andword="", zero="oh", group=2 | |
).replace(", ", " ") | |
else: | |
return _inflect.number_to_words(num, andword="") | |
def normalize_numbers(text): | |
text = re.sub(_comma_number_re, _remove_commas, text) | |
text = re.sub(_pounds_re, r"\1 pounds", text) | |
text = re.sub(_dollars_re, _expand_dollars, text) | |
text = re.sub(_decimal_number_re, _expand_decimal_point, text) | |
text = re.sub(_ordinal_re, _expand_ordinal, text) | |
text = re.sub(_number_re, _expand_number, text) | |
return text | |
def expand_numbers(text): | |
return normalize_numbers(text) | |
def lowercase(text): | |
return text.lower() | |
def collapse_whitespace(text): | |
return re.sub(_whitespace_re, " ", text) | |
def convert_to_ascii(text): | |
return unidecode(text) | |
def basic_cleaners(text): | |
"""Basic pipeline that lowercases and collapses whitespace without transliteration.""" | |
text = lowercase(text) | |
text = collapse_whitespace(text) | |
return text | |
def transliteration_cleaners(text): | |
"""Pipeline for non-English text that transliterates to ASCII.""" | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = collapse_whitespace(text) | |
return text | |
def english_cleaners(text): | |
"""Pipeline for English text, including number and abbreviation expansion.""" | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = expand_numbers(text) | |
text = expand_abbreviations(text) | |
text = collapse_whitespace(text) | |
text = text.replace('"', "") | |
return text | |
def lev_distance(s1, s2): | |
if len(s1) > len(s2): | |
s1, s2 = s2, s1 | |
distances = range(len(s1) + 1) | |
for i2, c2 in enumerate(s2): | |
distances_ = [i2 + 1] | |
for i1, c1 in enumerate(s1): | |
if c1 == c2: | |
distances_.append(distances[i1]) | |
else: | |
distances_.append( | |
1 + min((distances[i1], distances[i1 + 1], distances_[-1])) | |
) | |
distances = distances_ | |
return distances[-1] | |
DEFAULT_VOCAB_FILE = os.path.join( | |
os.path.dirname(os.path.realpath(__file__)), "../data/tokenizer.json" | |
) | |
class VoiceBpeTokenizer: | |
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE): | |
if vocab_file is not None: | |
self.tokenizer = Tokenizer.from_file(vocab_file) | |
def preprocess_text(self, txt): | |
txt = english_cleaners(txt) | |
return txt | |
def encode(self, txt): | |
txt = self.preprocess_text(txt) | |
txt = txt.replace(" ", "[SPACE]") | |
return self.tokenizer.encode(txt).ids | |
def decode(self, seq): | |
if isinstance(seq, torch.Tensor): | |
seq = seq.cpu().numpy() | |
txt = self.tokenizer.decode(seq, skip_special_tokens=False).replace(" ", "") | |
txt = txt.replace("[SPACE]", " ") | |
txt = txt.replace("[STOP]", "") | |
txt = txt.replace("[UNK]", "") | |
return txt | |