Spaces:
Running
Running
import os | |
try: import gdown | |
except ImportError: | |
raise ImportError( | |
"Sorry, gdown is required in order to download the new BigVGAN vocoder.\n" | |
"Please install it with `pip install gdown` and try again." | |
) | |
from urllib import request | |
import progressbar | |
D_STEM = "https://drive.google.com/uc?id=" | |
DEFAULT_MODELS_DIR = os.path.join( | |
os.path.expanduser("~"), ".cache", "tortoise", "models" | |
) | |
MODELS_DIR = os.environ.get("TORTOISE_MODELS_DIR", DEFAULT_MODELS_DIR) | |
# MODELS_DIR = os.environ.get("TORTOISE_MODELS_DIR") | |
MODELS = { | |
"autoregressive.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth", | |
"classifier.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth", | |
"clvp2.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth", | |
"cvvp.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/cvvp.pth", | |
"diffusion_decoder.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth", | |
"vocoder.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth", | |
"rlg_auto.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth", | |
"rlg_diffuser.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth", | |
# these links are from the nvidia gdrive | |
"bigvgan_base_24khz_100band_g.pth": "https://drive.google.com/uc?id=1_cKskUDuvxQJUEBwdgjAxKuDTUW6kPdY", | |
"bigvgan_24khz_100band_g.pth": "https://drive.google.com/uc?id=1wmP_mAs7d00KHVfVEl8B5Gb72Kzpcavp", | |
} | |
pbar = None | |
def download_models(specific_models=None): | |
""" | |
Call to download all the models that Tortoise uses. | |
""" | |
os.makedirs(MODELS_DIR, exist_ok=True) | |
def show_progress(block_num, block_size, total_size): | |
global pbar | |
if pbar is None: | |
pbar = progressbar.ProgressBar(maxval=total_size) | |
pbar.start() | |
downloaded = block_num * block_size | |
if downloaded < total_size: | |
pbar.update(downloaded) | |
else: | |
pbar.finish() | |
pbar = None | |
for model_name, url in MODELS.items(): | |
if specific_models is not None and model_name not in specific_models: | |
continue | |
model_path = os.path.join(MODELS_DIR, model_name) | |
if os.path.exists(model_path): | |
continue | |
print(f"Downloading {model_name} from {url}...") | |
if D_STEM in url: | |
gdown.download(url, model_path, quiet=False) | |
else: | |
request.urlretrieve(url, model_path, show_progress) | |
print("Done.") | |
def get_model_path(model_name, models_dir=MODELS_DIR): | |
""" | |
Get path to given model, download it if it doesn't exist. | |
""" | |
if model_name not in MODELS: | |
raise ValueError(f"Model {model_name} not found in available models.") | |
model_path = os.path.join(models_dir, model_name) | |
if not os.path.exists(model_path) and models_dir == MODELS_DIR: | |
download_models([model_name]) | |
return model_path | |
if __name__ == "__main__": | |
download_models() # to download all models |