Spaces:
Running
Running
File size: 7,721 Bytes
202826d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
#!/usr/bin/python
"""
# ==============================
# flowlib.py
# library for optical flow processing
# Author: Ruoteng Li
# Date: 6th Aug 2016
# ==============================
"""
#import png
import numpy as np
from PIL import Image
import io
UNKNOWN_FLOW_THRESH = 1e7
SMALLFLOW = 0.0
LARGEFLOW = 1e8
"""
=============
Flow Section
=============
"""
def write_flow(flow, filename):
"""
write optical flow in Middlebury .flo format
:param flow: optical flow map
:param filename: optical flow file path to be saved
:return: None
"""
f = open(filename, 'wb')
magic = np.array([202021.25], dtype=np.float32)
(height, width) = flow.shape[0:2]
w = np.array([width], dtype=np.int32)
h = np.array([height], dtype=np.int32)
magic.tofile(f)
w.tofile(f)
h.tofile(f)
flow.tofile(f)
f.close()
def save_flow_image(flow, image_file):
"""
save flow visualization into image file
:param flow: optical flow data
:param flow_fil
:return: None
"""
flow_img = flow_to_image(flow)
img_out = Image.fromarray(flow_img)
img_out.save(image_file)
def segment_flow(flow):
h = flow.shape[0]
w = flow.shape[1]
u = flow[:, :, 0]
v = flow[:, :, 1]
idx = ((abs(u) > LARGEFLOW) | (abs(v) > LARGEFLOW))
idx2 = (abs(u) == SMALLFLOW)
class0 = (v == 0) & (u == 0)
u[idx2] = 0.00001
tan_value = v / u
class1 = (tan_value < 1) & (tan_value >= 0) & (u > 0) & (v >= 0)
class2 = (tan_value >= 1) & (u >= 0) & (v >= 0)
class3 = (tan_value < -1) & (u <= 0) & (v >= 0)
class4 = (tan_value < 0) & (tan_value >= -1) & (u < 0) & (v >= 0)
class8 = (tan_value >= -1) & (tan_value < 0) & (u > 0) & (v <= 0)
class7 = (tan_value < -1) & (u >= 0) & (v <= 0)
class6 = (tan_value >= 1) & (u <= 0) & (v <= 0)
class5 = (tan_value >= 0) & (tan_value < 1) & (u < 0) & (v <= 0)
seg = np.zeros((h, w))
seg[class1] = 1
seg[class2] = 2
seg[class3] = 3
seg[class4] = 4
seg[class5] = 5
seg[class6] = 6
seg[class7] = 7
seg[class8] = 8
seg[class0] = 0
seg[idx] = 0
return seg
def flow_to_image(flow):
"""
Convert flow into middlebury color code image
:param flow: optical flow map
:return: optical flow image in middlebury color
"""
u = flow[:, :, 0]
v = flow[:, :, 1]
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
u[idxUnknow] = 0
v[idxUnknow] = 0
maxu = max(maxu, np.max(u))
minu = min(minu, np.min(u))
maxv = max(maxv, np.max(v))
minv = min(minv, np.min(v))
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(5, np.max(rad))
#maxrad = max(-1, 99)
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
img[idx] = 0
return np.uint8(img)
def disp_to_flowfile(disp, filename):
"""
Read KITTI disparity file in png format
:param disp: disparity matrix
:param filename: the flow file name to save
:return: None
"""
f = open(filename, 'wb')
magic = np.array([202021.25], dtype=np.float32)
(height, width) = disp.shape[0:2]
w = np.array([width], dtype=np.int32)
h = np.array([height], dtype=np.int32)
empty_map = np.zeros((height, width), dtype=np.float32)
data = np.dstack((disp, empty_map))
magic.tofile(f)
w.tofile(f)
h.tofile(f)
data.tofile(f)
f.close()
def compute_color(u, v):
"""
compute optical flow color map
:param u: optical flow horizontal map
:param v: optical flow vertical map
:return: optical flow in color code
"""
[h, w] = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
colorwheel = make_color_wheel()
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(0, np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def make_color_wheel():
"""
Generate color wheel according Middlebury color code
:return: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel
def read_flo_file(filename, memcached=False):
"""
Read from Middlebury .flo file
:param flow_file: name of the flow file
:return: optical flow data in matrix
"""
if memcached:
filename = io.BytesIO(filename)
f = open(filename, 'rb')
magic = np.fromfile(f, np.float32, count=1)[0]
data2d = None
if 202021.25 != magic:
print('Magic number incorrect. Invalid .flo file')
else:
w = np.fromfile(f, np.int32, count=1)[0]
h = np.fromfile(f, np.int32, count=1)[0]
data2d = np.fromfile(f, np.float32, count=2 * w * h)
# reshape data into 3D array (columns, rows, channels)
data2d = np.resize(data2d, (h, w, 2))
f.close()
return data2d
# fast resample layer
def resample(img, sz):
"""
img: flow map to be resampled
sz: new flow map size. Must be [height,weight]
"""
original_image_size = img.shape
in_height = img.shape[0]
in_width = img.shape[1]
out_height = sz[0]
out_width = sz[1]
out_flow = np.zeros((out_height, out_width, 2))
# find scale
height_scale = float(in_height) / float(out_height)
width_scale = float(in_width) / float(out_width)
[x,y] = np.meshgrid(range(out_width), range(out_height))
xx = x * width_scale
yy = y * height_scale
x0 = np.floor(xx).astype(np.int32)
x1 = x0 + 1
y0 = np.floor(yy).astype(np.int32)
y1 = y0 + 1
x0 = np.clip(x0,0,in_width-1)
x1 = np.clip(x1,0,in_width-1)
y0 = np.clip(y0,0,in_height-1)
y1 = np.clip(y1,0,in_height-1)
Ia = img[y0,x0,:]
Ib = img[y1,x0,:]
Ic = img[y0,x1,:]
Id = img[y1,x1,:]
wa = (y1-yy) * (x1-xx)
wb = (yy-y0) * (x1-xx)
wc = (y1-yy) * (xx-x0)
wd = (yy-y0) * (xx-x0)
out_flow[:,:,0] = (Ia[:,:,0]*wa + Ib[:,:,0]*wb + Ic[:,:,0]*wc + Id[:,:,0]*wd) * out_width / in_width
out_flow[:,:,1] = (Ia[:,:,1]*wa + Ib[:,:,1]*wb + Ic[:,:,1]*wc + Id[:,:,1]*wd) * out_height / in_height
return out_flow
|