Merge pull request #50 from DL4DS/text_extraction
Browse files
code/main.py
CHANGED
|
@@ -67,16 +67,19 @@ class Chatbot:
|
|
| 67 |
async def setup_llm(self):
|
| 68 |
"""
|
| 69 |
Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor.
|
|
|
|
|
|
|
| 70 |
"""
|
| 71 |
start_time = time.time()
|
| 72 |
|
| 73 |
llm_settings = cl.user_session.get("llm_settings", {})
|
| 74 |
-
chat_profile, retriever_method, memory_window, llm_style, generate_follow_up = (
|
| 75 |
llm_settings.get("chat_model"),
|
| 76 |
llm_settings.get("retriever_method"),
|
| 77 |
llm_settings.get("memory_window"),
|
| 78 |
llm_settings.get("llm_style"),
|
| 79 |
llm_settings.get("follow_up_questions"),
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
chain = cl.user_session.get("chain")
|
|
@@ -96,6 +99,7 @@ class Chatbot:
|
|
| 96 |
self.config["llm_params"]["llm_style"] = llm_style
|
| 97 |
self.config["llm_params"]["llm_loader"] = chat_profile
|
| 98 |
self.config["llm_params"]["generate_follow_up"] = generate_follow_up
|
|
|
|
| 99 |
|
| 100 |
self.llm_tutor.update_llm(
|
| 101 |
old_config, self.config
|
|
@@ -173,6 +177,12 @@ class Chatbot:
|
|
| 173 |
label="Stream response",
|
| 174 |
initial=config["llm_params"]["stream"],
|
| 175 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
cl.input_widget.Switch(
|
| 177 |
id="follow_up_questions",
|
| 178 |
label="Generate follow up questions",
|
|
|
|
| 67 |
async def setup_llm(self):
|
| 68 |
"""
|
| 69 |
Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor.
|
| 70 |
+
|
| 71 |
+
#TODO: Clean this up.
|
| 72 |
"""
|
| 73 |
start_time = time.time()
|
| 74 |
|
| 75 |
llm_settings = cl.user_session.get("llm_settings", {})
|
| 76 |
+
chat_profile, retriever_method, memory_window, llm_style, generate_follow_up, chunking_mode = (
|
| 77 |
llm_settings.get("chat_model"),
|
| 78 |
llm_settings.get("retriever_method"),
|
| 79 |
llm_settings.get("memory_window"),
|
| 80 |
llm_settings.get("llm_style"),
|
| 81 |
llm_settings.get("follow_up_questions"),
|
| 82 |
+
llm_settings.get("chunking_mode"),
|
| 83 |
)
|
| 84 |
|
| 85 |
chain = cl.user_session.get("chain")
|
|
|
|
| 99 |
self.config["llm_params"]["llm_style"] = llm_style
|
| 100 |
self.config["llm_params"]["llm_loader"] = chat_profile
|
| 101 |
self.config["llm_params"]["generate_follow_up"] = generate_follow_up
|
| 102 |
+
self.config["splitter_options"]["chunking_mode"] = chunking_mode
|
| 103 |
|
| 104 |
self.llm_tutor.update_llm(
|
| 105 |
old_config, self.config
|
|
|
|
| 177 |
label="Stream response",
|
| 178 |
initial=config["llm_params"]["stream"],
|
| 179 |
),
|
| 180 |
+
cl.input_widget.Select(
|
| 181 |
+
id="chunking_mode",
|
| 182 |
+
label="Chunking mode",
|
| 183 |
+
values=['fixed', 'semantic'],
|
| 184 |
+
initial_index=1,
|
| 185 |
+
),
|
| 186 |
cl.input_widget.Switch(
|
| 187 |
id="follow_up_questions",
|
| 188 |
label="Generate follow up questions",
|
code/modules/config/config.yml
CHANGED
|
@@ -39,6 +39,7 @@ llm_params:
|
|
| 39 |
filename: 'tinyllama-1.1b-chat-v1.0.Q5_0.gguf' # Specific name of gguf file in the repo
|
| 40 |
pdf_reader: 'pymupdf' # str [llama, pymupdf, gpt]
|
| 41 |
stream: False # bool
|
|
|
|
| 42 |
|
| 43 |
chat_logging:
|
| 44 |
log_chat: True # bool
|
|
@@ -50,6 +51,7 @@ splitter_options:
|
|
| 50 |
split_by_token : True # bool
|
| 51 |
remove_leftover_delimiters: True # bool
|
| 52 |
remove_chunks: False # bool
|
|
|
|
| 53 |
chunk_size : 300 # int
|
| 54 |
chunk_overlap : 30 # int
|
| 55 |
chunk_separators : ["\n\n", "\n", " ", ""] # list of strings
|
|
|
|
| 39 |
filename: 'tinyllama-1.1b-chat-v1.0.Q5_0.gguf' # Specific name of gguf file in the repo
|
| 40 |
pdf_reader: 'pymupdf' # str [llama, pymupdf, gpt]
|
| 41 |
stream: False # bool
|
| 42 |
+
pdf_reader: 'gpt' # str [llama, pymupdf, gpt]
|
| 43 |
|
| 44 |
chat_logging:
|
| 45 |
log_chat: True # bool
|
|
|
|
| 51 |
split_by_token : True # bool
|
| 52 |
remove_leftover_delimiters: True # bool
|
| 53 |
remove_chunks: False # bool
|
| 54 |
+
chunking_mode: 'semantic' # str [fixed, semantic]
|
| 55 |
chunk_size : 300 # int
|
| 56 |
chunk_overlap : 30 # int
|
| 57 |
chunk_separators : ["\n\n", "\n", " ", ""] # list of strings
|
code/modules/dataloader/data_loader.py
CHANGED
|
@@ -14,6 +14,8 @@ from llama_parse import LlamaParse
|
|
| 14 |
from langchain.schema import Document
|
| 15 |
import logging
|
| 16 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
| 17 |
from ragatouille import RAGPretrainedModel
|
| 18 |
from langchain.chains import LLMChain
|
| 19 |
from langchain_community.llms import OpenAI
|
|
@@ -63,12 +65,11 @@ class HTMLReader:
|
|
| 63 |
href = href.replace("http", "https")
|
| 64 |
|
| 65 |
absolute_url = urljoin(base_url, href)
|
| 66 |
-
link[
|
| 67 |
|
| 68 |
resp = requests.head(absolute_url)
|
| 69 |
if resp.status_code != 200:
|
| 70 |
-
logger.warning(f"Link {absolute_url} is broken")
|
| 71 |
-
logger.warning(f"Status code: {resp.status_code}")
|
| 72 |
|
| 73 |
return str(soup)
|
| 74 |
|
|
@@ -84,7 +85,6 @@ class HTMLReader:
|
|
| 84 |
else:
|
| 85 |
return None
|
| 86 |
|
| 87 |
-
|
| 88 |
class FileReader:
|
| 89 |
def __init__(self, logger, kind):
|
| 90 |
self.logger = logger
|
|
@@ -96,9 +96,7 @@ class FileReader:
|
|
| 96 |
else:
|
| 97 |
self.pdf_reader = PDFReader()
|
| 98 |
self.web_reader = HTMLReader()
|
| 99 |
-
self.logger.info(
|
| 100 |
-
f"Initialized FileReader with {kind} PDF reader and HTML reader"
|
| 101 |
-
)
|
| 102 |
|
| 103 |
def extract_text_from_pdf(self, pdf_path):
|
| 104 |
text = ""
|
|
@@ -156,21 +154,31 @@ class ChunkProcessor:
|
|
| 156 |
self.document_metadata = {}
|
| 157 |
self.document_chunks_full = []
|
| 158 |
|
|
|
|
|
|
|
|
|
|
| 159 |
if config["splitter_options"]["use_splitter"]:
|
| 160 |
-
if config["splitter_options"]["
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
else:
|
| 168 |
-
self.splitter =
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
separators=config["splitter_options"]["chunk_separators"],
|
| 172 |
-
disallowed_special=(),
|
| 173 |
)
|
|
|
|
| 174 |
else:
|
| 175 |
self.splitter = None
|
| 176 |
self.logger.info("ChunkProcessor instance created")
|
|
@@ -193,16 +201,12 @@ class ChunkProcessor:
|
|
| 193 |
def process_chunks(
|
| 194 |
self, documents, file_type="txt", source="", page=0, metadata={}
|
| 195 |
):
|
|
|
|
| 196 |
documents = [Document(page_content=documents, source=source, page=page)]
|
| 197 |
-
if
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
or file_type == "srt"
|
| 201 |
-
or file_type == "tex"
|
| 202 |
-
):
|
| 203 |
document_chunks = self.splitter.split_documents(documents)
|
| 204 |
-
elif file_type == "pdf":
|
| 205 |
-
document_chunks = documents # Full page for now
|
| 206 |
|
| 207 |
# add the source and page number back to the metadata
|
| 208 |
for chunk in document_chunks:
|
|
@@ -296,9 +300,6 @@ class ChunkProcessor:
|
|
| 296 |
def process_file(self, file_path, file_index, file_reader, addl_metadata):
|
| 297 |
file_name = os.path.basename(file_path)
|
| 298 |
|
| 299 |
-
if file_name in self.document_data:
|
| 300 |
-
return
|
| 301 |
-
|
| 302 |
file_type = file_name.split(".")[-1]
|
| 303 |
|
| 304 |
read_methods = {
|
|
@@ -313,7 +314,12 @@ class ChunkProcessor:
|
|
| 313 |
return
|
| 314 |
|
| 315 |
try:
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
| 318 |
self.process_documents(
|
| 319 |
documents, file_path, file_type, "file", addl_metadata
|
|
@@ -372,13 +378,14 @@ class ChunkProcessor:
|
|
| 372 |
f"{self.config['log_chunk_dir']}/metadata/doc_metadata.json", "r"
|
| 373 |
) as json_file:
|
| 374 |
self.document_metadata = json.load(json_file)
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
|
| 377 |
class DataLoader:
|
| 378 |
def __init__(self, config, logger=None):
|
| 379 |
-
self.file_reader = FileReader(
|
| 380 |
-
logger=logger, kind=config["llm_params"]["pdf_reader"]
|
| 381 |
-
)
|
| 382 |
self.chunk_processor = ChunkProcessor(config, logger=logger)
|
| 383 |
|
| 384 |
def get_chunks(self, uploaded_files, weblinks):
|
|
@@ -396,22 +403,19 @@ if __name__ == "__main__":
|
|
| 396 |
with open("../code/modules/config/config.yml", "r") as f:
|
| 397 |
config = yaml.safe_load(f)
|
| 398 |
|
| 399 |
-
STORAGE_DIR = os.path.join(BASE_DIR, config[
|
| 400 |
uploaded_files = [
|
| 401 |
-
os.path.join(STORAGE_DIR, file)
|
| 402 |
-
for file in os.listdir(STORAGE_DIR)
|
| 403 |
-
if file != "urls.txt"
|
| 404 |
]
|
| 405 |
|
| 406 |
data_loader = DataLoader(config, logger=logger)
|
| 407 |
document_chunks, document_names, documents, document_metadata = (
|
| 408 |
data_loader.get_chunks(
|
| 409 |
-
[
|
| 410 |
-
"https://dl4ds.github.io/sp2024/static_files/discussion_slides/00_discussion.pdf"
|
| 411 |
-
],
|
| 412 |
[],
|
| 413 |
)
|
| 414 |
)
|
| 415 |
|
| 416 |
print(document_names[:5])
|
| 417 |
print(len(document_chunks))
|
|
|
|
|
|
| 14 |
from langchain.schema import Document
|
| 15 |
import logging
|
| 16 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 17 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
| 18 |
+
from langchain_openai.embeddings import OpenAIEmbeddings
|
| 19 |
from ragatouille import RAGPretrainedModel
|
| 20 |
from langchain.chains import LLMChain
|
| 21 |
from langchain_community.llms import OpenAI
|
|
|
|
| 65 |
href = href.replace("http", "https")
|
| 66 |
|
| 67 |
absolute_url = urljoin(base_url, href)
|
| 68 |
+
link['href'] = absolute_url
|
| 69 |
|
| 70 |
resp = requests.head(absolute_url)
|
| 71 |
if resp.status_code != 200:
|
| 72 |
+
logger.warning(f"Link {absolute_url} is broken. Status code: {resp.status_code}")
|
|
|
|
| 73 |
|
| 74 |
return str(soup)
|
| 75 |
|
|
|
|
| 85 |
else:
|
| 86 |
return None
|
| 87 |
|
|
|
|
| 88 |
class FileReader:
|
| 89 |
def __init__(self, logger, kind):
|
| 90 |
self.logger = logger
|
|
|
|
| 96 |
else:
|
| 97 |
self.pdf_reader = PDFReader()
|
| 98 |
self.web_reader = HTMLReader()
|
| 99 |
+
self.logger.info(f"Initialized FileReader with {kind} PDF reader and HTML reader")
|
|
|
|
|
|
|
| 100 |
|
| 101 |
def extract_text_from_pdf(self, pdf_path):
|
| 102 |
text = ""
|
|
|
|
| 154 |
self.document_metadata = {}
|
| 155 |
self.document_chunks_full = []
|
| 156 |
|
| 157 |
+
if not config['vectorstore']['embedd_files']:
|
| 158 |
+
self.load_document_data()
|
| 159 |
+
|
| 160 |
if config["splitter_options"]["use_splitter"]:
|
| 161 |
+
if config["splitter_options"]["chunking_mode"] == "fixed":
|
| 162 |
+
if config["splitter_options"]["split_by_token"]:
|
| 163 |
+
self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
| 164 |
+
chunk_size=config["splitter_options"]["chunk_size"],
|
| 165 |
+
chunk_overlap=config["splitter_options"]["chunk_overlap"],
|
| 166 |
+
separators=config["splitter_options"]["chunk_separators"],
|
| 167 |
+
disallowed_special=(),
|
| 168 |
+
)
|
| 169 |
+
else:
|
| 170 |
+
self.splitter = RecursiveCharacterTextSplitter(
|
| 171 |
+
chunk_size=config["splitter_options"]["chunk_size"],
|
| 172 |
+
chunk_overlap=config["splitter_options"]["chunk_overlap"],
|
| 173 |
+
separators=config["splitter_options"]["chunk_separators"],
|
| 174 |
+
disallowed_special=(),
|
| 175 |
+
)
|
| 176 |
else:
|
| 177 |
+
self.splitter = SemanticChunker(
|
| 178 |
+
OpenAIEmbeddings(),
|
| 179 |
+
breakpoint_threshold_type="percentile"
|
|
|
|
|
|
|
| 180 |
)
|
| 181 |
+
|
| 182 |
else:
|
| 183 |
self.splitter = None
|
| 184 |
self.logger.info("ChunkProcessor instance created")
|
|
|
|
| 201 |
def process_chunks(
|
| 202 |
self, documents, file_type="txt", source="", page=0, metadata={}
|
| 203 |
):
|
| 204 |
+
# TODO: Clear up this pipeline of re-adding metadata
|
| 205 |
documents = [Document(page_content=documents, source=source, page=page)]
|
| 206 |
+
if file_type == "pdf" and self.config["splitter_options"]["chunking_mode"] == "fixed":
|
| 207 |
+
document_chunks = documents
|
| 208 |
+
else:
|
|
|
|
|
|
|
|
|
|
| 209 |
document_chunks = self.splitter.split_documents(documents)
|
|
|
|
|
|
|
| 210 |
|
| 211 |
# add the source and page number back to the metadata
|
| 212 |
for chunk in document_chunks:
|
|
|
|
| 300 |
def process_file(self, file_path, file_index, file_reader, addl_metadata):
|
| 301 |
file_name = os.path.basename(file_path)
|
| 302 |
|
|
|
|
|
|
|
|
|
|
| 303 |
file_type = file_name.split(".")[-1]
|
| 304 |
|
| 305 |
read_methods = {
|
|
|
|
| 314 |
return
|
| 315 |
|
| 316 |
try:
|
| 317 |
+
|
| 318 |
+
if file_path in self.document_data:
|
| 319 |
+
self.logger.warning(f"File {file_name} already processed")
|
| 320 |
+
documents = [Document(page_content=content) for content in self.document_data[file_path].values()]
|
| 321 |
+
else:
|
| 322 |
+
documents = read_methods[file_type](file_path)
|
| 323 |
|
| 324 |
self.process_documents(
|
| 325 |
documents, file_path, file_type, "file", addl_metadata
|
|
|
|
| 378 |
f"{self.config['log_chunk_dir']}/metadata/doc_metadata.json", "r"
|
| 379 |
) as json_file:
|
| 380 |
self.document_metadata = json.load(json_file)
|
| 381 |
+
self.logger.info(
|
| 382 |
+
f"Loaded document content from {self.config['log_chunk_dir']}/docs/doc_content.json. Total documents: {len(self.document_data)}"
|
| 383 |
+
)
|
| 384 |
|
| 385 |
|
| 386 |
class DataLoader:
|
| 387 |
def __init__(self, config, logger=None):
|
| 388 |
+
self.file_reader = FileReader(logger=logger, kind=config["llm_params"]["pdf_reader"])
|
|
|
|
|
|
|
| 389 |
self.chunk_processor = ChunkProcessor(config, logger=logger)
|
| 390 |
|
| 391 |
def get_chunks(self, uploaded_files, weblinks):
|
|
|
|
| 403 |
with open("../code/modules/config/config.yml", "r") as f:
|
| 404 |
config = yaml.safe_load(f)
|
| 405 |
|
| 406 |
+
STORAGE_DIR = os.path.join(BASE_DIR, config['vectorstore']["data_path"])
|
| 407 |
uploaded_files = [
|
| 408 |
+
os.path.join(STORAGE_DIR, file) for file in os.listdir(STORAGE_DIR) if file != "urls.txt"
|
|
|
|
|
|
|
| 409 |
]
|
| 410 |
|
| 411 |
data_loader = DataLoader(config, logger=logger)
|
| 412 |
document_chunks, document_names, documents, document_metadata = (
|
| 413 |
data_loader.get_chunks(
|
| 414 |
+
["https://dl4ds.github.io/sp2024/static_files/lectures/05_loss_functions_v2.pdf"],
|
|
|
|
|
|
|
| 415 |
[],
|
| 416 |
)
|
| 417 |
)
|
| 418 |
|
| 419 |
print(document_names[:5])
|
| 420 |
print(len(document_chunks))
|
| 421 |
+
|
code/modules/dataloader/pdf_readers/gpt.py
CHANGED
|
@@ -23,7 +23,7 @@ class GPTParser:
|
|
| 23 |
The goal is to extract the text, images and equations from the slides and convert everything to markdown format. Some of the equations may be complicated.
|
| 24 |
The markdown should be clean and easy to read, and any math equation should be converted to LaTeX, between $$.
|
| 25 |
For images, give a description and if you can, a source. Separate each page with '---'.
|
| 26 |
-
Just respond with the markdown.
|
| 27 |
"""
|
| 28 |
|
| 29 |
def parse(self, pdf_path):
|
|
|
|
| 23 |
The goal is to extract the text, images and equations from the slides and convert everything to markdown format. Some of the equations may be complicated.
|
| 24 |
The markdown should be clean and easy to read, and any math equation should be converted to LaTeX, between $$.
|
| 25 |
For images, give a description and if you can, a source. Separate each page with '---'.
|
| 26 |
+
Just respond with the markdown. Do not include page numbers or any other metadata. Do not try to provide titles. Strictly the content.
|
| 27 |
"""
|
| 28 |
|
| 29 |
def parse(self, pdf_path):
|
code/modules/vectorstore/faiss.py
CHANGED
|
@@ -14,6 +14,10 @@ class FaissVectorStore(VectorStoreBase):
|
|
| 14 |
def __init__(self, config):
|
| 15 |
self.config = config
|
| 16 |
self._init_vector_db()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def _init_vector_db(self):
|
| 19 |
self.faiss = FAISS(
|
|
@@ -25,24 +29,12 @@ class FaissVectorStore(VectorStoreBase):
|
|
| 25 |
documents=document_chunks, embedding=embedding_model
|
| 26 |
)
|
| 27 |
self.vectorstore.save_local(
|
| 28 |
-
|
| 29 |
-
self.config["vectorstore"]["db_path"],
|
| 30 |
-
"db_"
|
| 31 |
-
+ self.config["vectorstore"]["db_option"]
|
| 32 |
-
+ "_"
|
| 33 |
-
+ self.config["vectorstore"]["model"],
|
| 34 |
-
)
|
| 35 |
)
|
| 36 |
|
| 37 |
def load_database(self, embedding_model):
|
| 38 |
self.vectorstore = self.faiss.load_local(
|
| 39 |
-
|
| 40 |
-
self.config["vectorstore"]["db_path"],
|
| 41 |
-
"db_"
|
| 42 |
-
+ self.config["vectorstore"]["db_option"]
|
| 43 |
-
+ "_"
|
| 44 |
-
+ self.config["vectorstore"]["model"],
|
| 45 |
-
),
|
| 46 |
embedding_model,
|
| 47 |
allow_dangerous_deserialization=True,
|
| 48 |
)
|
|
|
|
| 14 |
def __init__(self, config):
|
| 15 |
self.config = config
|
| 16 |
self._init_vector_db()
|
| 17 |
+
self.local_path = os.path.join(self.config["vectorstore"]["db_path"],
|
| 18 |
+
"db_" + self.config["vectorstore"]["db_option"]
|
| 19 |
+
+ "_" + self.config["vectorstore"]["model"]
|
| 20 |
+
+ "_" + config["splitter_options"]["chunking_mode"])
|
| 21 |
|
| 22 |
def _init_vector_db(self):
|
| 23 |
self.faiss = FAISS(
|
|
|
|
| 29 |
documents=document_chunks, embedding=embedding_model
|
| 30 |
)
|
| 31 |
self.vectorstore.save_local(
|
| 32 |
+
self.local_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
)
|
| 34 |
|
| 35 |
def load_database(self, embedding_model):
|
| 36 |
self.vectorstore = self.faiss.load_local(
|
| 37 |
+
self.local_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
embedding_model,
|
| 39 |
allow_dangerous_deserialization=True,
|
| 40 |
)
|