File size: 1,500 Bytes
7aa2ccc
4174f3d
 
7aa2ccc
4174f3d
7aa2ccc
 
 
1227a66
7aa2ccc
 
 
 
 
 
 
 
1946b86
7aa2ccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227a66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import gradio as gr
from langchain_community.agent_toolkits.load_tools import load_tools  # Updated import
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain_openai import ChatOpenAI  # Updated import
import os

# Set your OpenAI API key (ensure to store it securely in Hugging Face Spaces environment variables)
# os.environ["OPENAI_API_KEY"] = "your_openai_api_key"
import warnings
warnings.filterwarnings("ignore", message=".*TqdmWarning.*")
from dotenv import load_dotenv

_ = load_dotenv()

# Define the LLM model
llm_model = "gpt-3.5-turbo"
llm = ChatOpenAI(temperature=0, model=llm_model, openai_api_key=os.getenv('OPEN_API_KEY'))  # Ensure to pass the API key

# Load tools
tools = load_tools(["llm-math", "wikipedia"], llm=llm)

# Initialize agent
agent = initialize_agent(
    tools, 
    llm, 
    agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
    handle_parsing_errors=True,
    verbose=True
)

def chatbot(query):
    """Handles user query and returns agent response."""
    try:
        response = agent.run(query)
        return response
    except Exception as e:
        return str(e)

# Create Gradio interface
demo = gr.Interface(
    fn=chatbot,
    inputs=gr.Textbox(label="Your Question", placeholder="Ask me anything..."),
    outputs=gr.Textbox(label="Response"),
    title="LangChain AI Chatbot",
    description="A smart AI chatbot powered by OpenAI and LangChain.",
    theme="compact"
)

# Launch the app
demo.launch()