|
import gradio as gr |
|
import os |
|
import wikipedia |
|
from langchain_community.chat_models import ChatOpenAI |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.agents import AgentExecutor, initialize_agent |
|
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain.tools import Tool |
|
|
|
|
|
def create_your_own(query: str) -> str: |
|
"""This function can do whatever you would like once you fill it in""" |
|
return query[::-1] |
|
|
|
def get_current_temperature(query: str) -> str: |
|
return "It's sunny and 75°F." |
|
|
|
def search_wikipedia(query: str) -> str: |
|
try: |
|
summary = wikipedia.summary(query, sentences=2) |
|
return summary |
|
except wikipedia.exceptions.DisambiguationError as e: |
|
return f"Multiple results found: {', '.join(e.options[:5])}" |
|
except wikipedia.exceptions.PageError: |
|
return "No relevant Wikipedia page found." |
|
|
|
tools = [ |
|
Tool(name="Temperature", func=get_current_temperature, description="Get current temperature"), |
|
Tool(name="Search Wikipedia", func=search_wikipedia, description="Search Wikipedia"), |
|
Tool(name="Create Your Own", func=create_your_own, description="Custom tool for processing input") |
|
] |
|
|
|
|
|
class cbfs: |
|
def __init__(self, tools): |
|
self.model = ChatOpenAI(temperature=0, openai_api_key=os.getenv("OPENAI_API_KEY")) |
|
self.memory = ConversationBufferMemory(return_messages=True, memory_key="chat_history", ai_prefix="Assistant") |
|
self.prompt = ChatPromptTemplate.from_messages([ |
|
("system", "You are a helpful but sassy assistant. Remember what the user tells you in the conversation."), |
|
MessagesPlaceholder(variable_name="chat_history"), |
|
("user", "{input}"), |
|
MessagesPlaceholder(variable_name="agent_scratchpad") |
|
]) |
|
self.chain = initialize_agent( |
|
tools=tools, |
|
llm=self.model, |
|
agent="zero-shot-react-description", |
|
verbose=True, |
|
memory=self.memory |
|
) |
|
|
|
def convchain(self, query): |
|
if not query: |
|
return "Please enter a query." |
|
try: |
|
result = self.chain.invoke({"input": query}) |
|
response = result.get("output", "No response generated.") |
|
self.memory.save_context({"input": query}, {"output": response}) |
|
print("Agent Execution Result:", response) |
|
return response |
|
except Exception as e: |
|
print("Execution Error:", str(e)) |
|
return f"Error: {str(e)}" |
|
|
|
|
|
cb = cbfs(tools) |
|
|
|
def process_query(query): |
|
return cb.convchain(query) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
inp = gr.Textbox(placeholder="Enter text here…", label="User Input") |
|
output = gr.Textbox(placeholder="Response...", label="ChatBot Output", interactive=False) |
|
inp.submit(process_query, inputs=inp, outputs=output) |
|
|
|
demo.launch(share=True) |
|
|
|
|
|
|
|
|
|
|