Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,30 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
#from langchain.chat_models import ChatOpenAI
|
5 |
from langchain_community.chat_models import ChatOpenAI
|
6 |
from langchain.memory import ConversationBufferMemory
|
|
|
7 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
8 |
from langchain.tools import Tool
|
9 |
|
10 |
-
# Define
|
11 |
-
|
12 |
def create_your_own(query: str) -> str:
|
13 |
"""This function can do whatever you would like once you fill it in"""
|
14 |
return query[::-1]
|
15 |
|
16 |
-
# Define other tools (example placeholders for context)
|
17 |
def get_current_temperature(query: str) -> str:
|
18 |
return "It's sunny and 75°F."
|
19 |
|
20 |
def search_wikipedia(query: str) -> str:
|
21 |
return "Wikipedia search results for: " + query
|
22 |
|
23 |
-
# Add the new tool to the list of available tools
|
24 |
tools = [
|
25 |
Tool(name="Temperature", func=get_current_temperature, description="Get current temperature"),
|
26 |
Tool(name="Search Wikipedia", func=search_wikipedia, description="Search Wikipedia"),
|
27 |
Tool(name="Create Your Own", func=create_your_own, description="Custom tool for processing input")
|
28 |
]
|
29 |
|
30 |
-
# Define
|
31 |
class cbfs:
|
32 |
-
|
33 |
def __init__(self, tools):
|
34 |
self.model = ChatOpenAI(temperature=0, openai_api_key=os.getenv("OPENAI_API_KEY"))
|
35 |
self.memory = ConversationBufferMemory(return_messages=True, memory_key="chat_history")
|
@@ -39,47 +34,39 @@ class cbfs:
|
|
39 |
("user", "{input}"),
|
40 |
MessagesPlaceholder(variable_name="agent_scratchpad")
|
41 |
])
|
42 |
-
|
43 |
self.chain = initialize_agent(
|
44 |
-
tools=tools,
|
45 |
-
llm=self.model,
|
46 |
-
#agent="chat-conversational-react-description",
|
47 |
agent="zero-shot-react-description",
|
48 |
-
|
49 |
-
|
50 |
)
|
51 |
|
52 |
-
#def convchain(self, query):
|
53 |
-
#if not query:
|
54 |
-
#return "Please enter a query."
|
55 |
-
#result = self.chain.invoke({"input": query})
|
56 |
-
#return result.get('output_text', "No response generated.")
|
57 |
-
|
58 |
def convchain(self, query):
|
59 |
if not query:
|
60 |
return "Please enter a query."
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
|
68 |
-
# Create
|
69 |
cb = cbfs(tools)
|
70 |
|
71 |
-
# Create the Gradio interface
|
72 |
def process_query(query):
|
73 |
return cb.convchain(query)
|
74 |
|
75 |
-
#
|
76 |
with gr.Blocks() as demo:
|
77 |
with gr.Row():
|
78 |
inp = gr.Textbox(placeholder="Enter text here…", label="User Input")
|
79 |
output = gr.Textbox(placeholder="Response...", label="ChatBot Output", interactive=False)
|
80 |
-
|
81 |
inp.submit(process_query, inputs=inp, outputs=output)
|
82 |
|
83 |
demo.launch(share=True)
|
84 |
|
85 |
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
|
|
3 |
from langchain_community.chat_models import ChatOpenAI
|
4 |
from langchain.memory import ConversationBufferMemory
|
5 |
+
from langchain.agents import AgentExecutor, initialize_agent
|
6 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
7 |
from langchain.tools import Tool
|
8 |
|
9 |
+
# Define tools
|
|
|
10 |
def create_your_own(query: str) -> str:
|
11 |
"""This function can do whatever you would like once you fill it in"""
|
12 |
return query[::-1]
|
13 |
|
|
|
14 |
def get_current_temperature(query: str) -> str:
|
15 |
return "It's sunny and 75°F."
|
16 |
|
17 |
def search_wikipedia(query: str) -> str:
|
18 |
return "Wikipedia search results for: " + query
|
19 |
|
|
|
20 |
tools = [
|
21 |
Tool(name="Temperature", func=get_current_temperature, description="Get current temperature"),
|
22 |
Tool(name="Search Wikipedia", func=search_wikipedia, description="Search Wikipedia"),
|
23 |
Tool(name="Create Your Own", func=create_your_own, description="Custom tool for processing input")
|
24 |
]
|
25 |
|
26 |
+
# Define chatbot class
|
27 |
class cbfs:
|
|
|
28 |
def __init__(self, tools):
|
29 |
self.model = ChatOpenAI(temperature=0, openai_api_key=os.getenv("OPENAI_API_KEY"))
|
30 |
self.memory = ConversationBufferMemory(return_messages=True, memory_key="chat_history")
|
|
|
34 |
("user", "{input}"),
|
35 |
MessagesPlaceholder(variable_name="agent_scratchpad")
|
36 |
])
|
|
|
37 |
self.chain = initialize_agent(
|
38 |
+
tools=tools,
|
39 |
+
llm=self.model,
|
|
|
40 |
agent="zero-shot-react-description",
|
41 |
+
verbose=True,
|
42 |
+
memory=self.memory
|
43 |
)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def convchain(self, query):
|
46 |
if not query:
|
47 |
return "Please enter a query."
|
48 |
+
try:
|
49 |
+
result = self.chain.invoke({"input": query})
|
50 |
+
print("Agent Execution Result:", result) # Debugging output
|
51 |
+
return result.get("output", "No response generated.")
|
52 |
+
except Exception as e:
|
53 |
+
print("Execution Error:", str(e))
|
54 |
+
return f"Error: {str(e)}"
|
55 |
|
56 |
+
# Create chatbot instance
|
57 |
cb = cbfs(tools)
|
58 |
|
|
|
59 |
def process_query(query):
|
60 |
return cb.convchain(query)
|
61 |
|
62 |
+
# Define Gradio UI
|
63 |
with gr.Blocks() as demo:
|
64 |
with gr.Row():
|
65 |
inp = gr.Textbox(placeholder="Enter text here…", label="User Input")
|
66 |
output = gr.Textbox(placeholder="Response...", label="ChatBot Output", interactive=False)
|
|
|
67 |
inp.submit(process_query, inputs=inp, outputs=output)
|
68 |
|
69 |
demo.launch(share=True)
|
70 |
|
71 |
|
72 |
+
|