dlaima commited on
Commit
4878ce8
·
verified ·
1 Parent(s): ebe7442

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +135 -0
app.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ warnings.filterwarnings("ignore", message=".*TqdmWarning.*")
3
+ from dotenv import load_dotenv
4
+
5
+ _ = load_dotenv()
6
+
7
+ from langgraph.graph import StateGraph, END
8
+ from typing import TypedDict, Annotated, List
9
+ import operator
10
+ from langchain_core.messages import SystemMessage, HumanMessage
11
+ from langchain_openai import ChatOpenAI
12
+ from pydantic import BaseModel
13
+ from tavily import TavilyClient
14
+ import os
15
+ import gradio as gr
16
+
17
+ # Define agent state class
18
+ class AgentState(TypedDict):
19
+ task: str
20
+ lnode: str
21
+ plan: str
22
+ research_queries: List[str]
23
+ draft: str
24
+ critique: str
25
+ content: List[str]
26
+ revision_number: int
27
+ max_revisions: int
28
+ count: Annotated[int, operator.add]
29
+
30
+ # Define queries class
31
+ class Queries(BaseModel):
32
+ queries: List[str]
33
+
34
+ # Writer Agent Class
35
+ class Ewriter():
36
+ def __init__(self):
37
+ self.model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
38
+ self.PLAN_PROMPT = "You are an expert writer tasked with writing a high-level outline of a short 3-paragraph essay."
39
+ self.RESEARCH_PROMPT = "Generate three research queries to help in writing an essay on the given topic."
40
+ self.WRITER_PROMPT = "You are an essay assistant tasked with writing an excellent 3-paragraph essay."
41
+ self.REFLECTION_PROMPT = "You are a teacher grading an essay. Provide critique and suggestions."
42
+ self.tavily = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])
43
+
44
+ # Initialize Graph
45
+ builder = StateGraph(AgentState)
46
+ builder.add_node("planner", self.plan_node)
47
+ builder.add_node("research", self.research_node)
48
+ builder.add_node("generate", self.generation_node)
49
+ builder.add_node("reflect", self.reflection_node)
50
+ builder.set_entry_point("planner")
51
+ builder.add_edge("planner", "research")
52
+ builder.add_edge("research", "generate")
53
+ builder.add_edge("generate", "reflect")
54
+ builder.add_edge("reflect", END) # Ensure reflect is not a dead-end
55
+
56
+ self.graph = builder.compile()
57
+
58
+ def plan_node(self, state: AgentState):
59
+ try:
60
+ response = self.model.invoke([SystemMessage(content=self.PLAN_PROMPT), HumanMessage(content=state['task'])])
61
+ return {"plan": response.content, "lnode": "planner", "count": 1}
62
+ except Exception as e:
63
+ return {"plan": f"Error occurred in planning: {str(e)}", "lnode": "planner", "count": 0}
64
+
65
+ def research_node(self, state: AgentState):
66
+ try:
67
+ response = self.model.invoke([SystemMessage(content=self.RESEARCH_PROMPT), HumanMessage(content=state['task'])])
68
+ return {"research_queries": response.content.split('\n'), "lnode": "research", "count": 1}
69
+ except Exception as e:
70
+ return {"research_queries": f"Error occurred in research: {str(e)}", "lnode": "research", "count": 0}
71
+
72
+ def generation_node(self, state: AgentState):
73
+ try:
74
+ response = self.model.invoke([SystemMessage(content=self.WRITER_PROMPT), HumanMessage(content=state['task'])])
75
+ return {"draft": response.content, "lnode": "generate", "count": 1}
76
+ except Exception as e:
77
+ return {"draft": f"Error occurred in generation: {str(e)}", "lnode": "generate", "count": 0}
78
+
79
+ def reflection_node(self, state: AgentState):
80
+ try:
81
+ response = self.model.invoke([SystemMessage(content=self.REFLECTION_PROMPT), HumanMessage(content=state['draft'])])
82
+ return {"critique": response.content, "lnode": "reflect", "count": 1}
83
+ except Exception as e:
84
+ return {"critique": f"Error occurred in reflection: {str(e)}", "lnode": "reflect", "count": 0}
85
+
86
+ # Gradio UI
87
+ class WriterGui():
88
+ def __init__(self, graph):
89
+ self.graph = graph
90
+ self.demo = self.create_interface()
91
+
92
+ def run_agent(self, topic, revision_number, max_revisions):
93
+ config = {'task': topic, 'max_revisions': max_revisions, 'revision_number': revision_number, 'lnode': "", 'count': 0}
94
+ response = self.graph.invoke(config)
95
+ return response["draft"], response["lnode"], response["count"], response.get("critique", ""), response.get("research_queries", [])
96
+
97
+ def continue_agent(self, topic, revision_number, max_revisions, last_node, current_draft):
98
+ config = {'task': topic, 'max_revisions': max_revisions, 'revision_number': revision_number, 'lnode': last_node, 'draft': current_draft, 'count': 0}
99
+ response = self.graph.invoke(config)
100
+ return response["draft"], response["lnode"], response["count"], response.get("critique", ""), response.get("research_queries", [])
101
+
102
+ def create_interface(self):
103
+ with gr.Blocks() as demo:
104
+ with gr.Tabs():
105
+ with gr.Tab("Agent"):
106
+ topic_input = gr.Textbox(label="Essay Topic")
107
+ last_node = gr.Textbox(label="Last Node", interactive=False)
108
+ next_node = gr.Textbox(label="Next Node", interactive=False)
109
+ thread = gr.Textbox(label="Thread", interactive=False)
110
+ draft_rev = gr.Textbox(label="Draft Revision", interactive=False)
111
+ count = gr.Textbox(label="Count", interactive=False)
112
+ generate_button = gr.Button("Generate Essay", variant="primary")
113
+ continue_button = gr.Button("Continue Essay")
114
+
115
+ with gr.Row():
116
+ gr.Markdown("**Manage Agent**")
117
+ with gr.Row():
118
+ output_text = gr.Textbox(label="Live Agent Output", interactive=False)
119
+ with gr.Row():
120
+ critique_text = gr.Textbox(label="Critique", interactive=False)
121
+ with gr.Row():
122
+ research_text = gr.Textbox(label="Research Queries", interactive=False)
123
+
124
+ generate_button.click(fn=self.run_agent, inputs=[topic_input, gr.State(0), gr.State(2)], outputs=[output_text, last_node, next_node, critique_text, research_text])
125
+ continue_button.click(fn=self.continue_agent, inputs=[topic_input, gr.State(0), gr.State(2), last_node, draft_rev], outputs=[output_text, last_node, next_node, critique_text, research_text])
126
+
127
+ return demo
128
+
129
+ def launch(self):
130
+ self.demo.launch(share=True)
131
+
132
+ # Run the App
133
+ MultiAgent = Ewriter()
134
+ app = WriterGui(MultiAgent.graph)
135
+ app.launch()