import gradio as gr from transformers import pipeline # Load the summarization pipeline pipe = pipeline("summarization", model="facebook/bart-large-cnn") # Define the summarization function def summarize_text(text, max_length=130, min_length=30, length_penalty=2.0): response = pipe( text, max_length=max_length, min_length=min_length, length_penalty=length_penalty, truncation=True ) return response[0]['summary_text'] # Create the Gradio app interface with gr.Blocks() as app: gr.Markdown("## Text Summarization App") gr.Markdown( "Enter a long text below, and the model will generate a concise summary. " "This app uses the `facebook/bart-large-cnn` model." ) with gr.Row(): input_text = gr.Textbox( label="Input Text", placeholder="Paste your text here...", lines=10 ) output_summary = gr.Textbox(label="Summary", lines=5) max_length = gr.Slider( label="Max Length", minimum=50, maximum=200, step=10, value=130 ) min_length = gr.Slider( label="Min Length", minimum=10, maximum=100, step=10, value=30 ) length_penalty = gr.Slider( label="Length Penalty", minimum=0.5, maximum=3.0, step=0.1, value=2.0 ) submit_button = gr.Button("Summarize") submit_button.click( fn=summarize_text, inputs=[input_text, max_length, min_length, length_penalty], outputs=output_summary ) # Launch the app if __name__ == "__main__": app.launch()