Spaces:
Running
Running
dlaiu
commited on
Commit
·
176ce75
1
Parent(s):
26ba744
output as json with processing
Browse files
app.py
CHANGED
@@ -4,6 +4,45 @@ from parselmouth.praat import call
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def get_pitch(audio_data):
|
8 |
rate, data = audio_data
|
9 |
if data.ndim > 1: # Check if the audio is stereo or multi-channel
|
@@ -21,7 +60,11 @@ def get_pitch(audio_data):
|
|
21 |
df_pitch = pd.DataFrame(np.column_stack([pitch.xs(), pitch_values]),
|
22 |
columns=['time', 'pitch'])
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
except Exception as e:
|
26 |
return "Error in pitch extraction: " + str(e)
|
27 |
|
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
|
7 |
+
def find_rises_and_peaks_gradient(data, threshold=4):
|
8 |
+
data['rise_point'] = 0
|
9 |
+
data['peak_point'] = 0
|
10 |
+
|
11 |
+
pitch_values = data['pitch'].values
|
12 |
+
gradients = np.gradient(pitch_values)
|
13 |
+
|
14 |
+
in_rise = False
|
15 |
+
rise_start = 0
|
16 |
+
successive_rise_count = 0
|
17 |
+
min_successive_rise = 3 # Minimum successive values to qualify as a rise
|
18 |
+
checking_rise = False # Flag to start checking for rises after NaN
|
19 |
+
|
20 |
+
for i in range(1, len(gradients)):
|
21 |
+
if np.isnan(pitch_values[i]):
|
22 |
+
checking_rise = False # Reset flag when encountering NaN
|
23 |
+
in_rise = False
|
24 |
+
successive_rise_count = 0
|
25 |
+
continue
|
26 |
+
|
27 |
+
if not checking_rise:
|
28 |
+
checking_rise = True # Start checking for rises after NaN
|
29 |
+
continue
|
30 |
+
|
31 |
+
if gradients[i] >= threshold:
|
32 |
+
if not in_rise:
|
33 |
+
in_rise = True
|
34 |
+
rise_start = i-1
|
35 |
+
successive_rise_count += 1
|
36 |
+
else:
|
37 |
+
if in_rise:
|
38 |
+
if successive_rise_count >= min_successive_rise:
|
39 |
+
data.at[rise_start, 'rise_point'] = 1
|
40 |
+
data.at[i-1, 'peak_point'] = 1
|
41 |
+
in_rise = False
|
42 |
+
successive_rise_count = 0
|
43 |
+
|
44 |
+
return data
|
45 |
+
|
46 |
def get_pitch(audio_data):
|
47 |
rate, data = audio_data
|
48 |
if data.ndim > 1: # Check if the audio is stereo or multi-channel
|
|
|
60 |
df_pitch = pd.DataFrame(np.column_stack([pitch.xs(), pitch_values]),
|
61 |
columns=['time', 'pitch'])
|
62 |
|
63 |
+
df_pitch = find_rises_and_peaks_gradient(df_pitch)
|
64 |
+
|
65 |
+
output = df_pitch.to_json(orient='records')
|
66 |
+
|
67 |
+
return output
|
68 |
except Exception as e:
|
69 |
return "Error in pitch extraction: " + str(e)
|
70 |
|