GradioTest / app.py
dlflannery's picture
Update app.py
a42a483 verified
raw
history blame
5.47 kB
import os
import gradio as gr
# import openai
from openai import OpenAI
from dotenv import load_dotenv
from pathlib import Path
from time import sleep
load_dotenv(override=True)
key = os.getenv('OPENAI_API_KEY')
users = os.getenv('LOGNAME')
unames = users.split(',')
pwds = os.getenv('PASSWORD')
pwdList = pwds.split(',')
site = os.getenv('SITE')
if site == 'local':
dp = Path('./data')
dp.mkdir(exist_ok=True)
dataDir = './data/'
else:
dp = Path('/data')
dp.mkdir(exist_ok=True)
dataDir = '/data/'
client = OpenAI(api_key = key)
def genUsageStats(do_reset=False):
result = []
ttotal4o = 0
ttotal4mini = 0
for user in unames:
tokens4o = 0
tokens4mini = 0
fp = dataDir + user + '_log.txt'
if os.path.exists(fp):
accessOk = False
for i in range(3):
try:
with open(fp) as f:
dataList = f.readlines()
if do_reset:
os.remove(fp)
else:
for line in dataList:
(u, t) = line.split(':')
(t, m) = t.split('-')
tcount = int(t)
if 'mini' in m:
tokens4mini += tcount
ttotal4mini += tcount
else:
tokens4o += tcount
ttotal4o += tcount
accessOk = True
break
except:
sleep(3)
if not accessOk:
return f'File access failed reading stats for user: {user}'
result.append([user, str(tokens4mini), str(tokens4o)])
gtotal = ttotal4mini + ttotal4o
result.append(['totals', str(ttotal4mini), str(ttotal4o), str(gtotal)])
return result
def clear():
return [None, [], None]
def updatePassword(txt):
return [txt.lower().strip(), "*********"]
# def setModel(val):
# return val
def chat(prompt, user_window, pwd_window, past, response, gptModel):
user_window = user_window.lower().strip()
isBoss = False
if user_window == unames[0] and pwd_window == pwdList[0]:
isBoss = True
if prompt == 'stats':
response = genUsageStats()
return [past, response, None, gptModel]
if prompt == 'reset':
response = genUsageStats(True)
return [past, response, None, gptModel]
if prompt.startswith('gpt4'):
gptModel = 'gpt-4o'
prompt = prompt[5:]
if user_window in unames and pwd_window in pwdList:
past.append({"role":"user", "content":prompt})
completion = client.chat.completions.create(model=gptModel,
messages=past)
reply = completion.choices[0].message.content
tokens = completion.usage.total_tokens
response += "\n\nYOU: " + prompt + "\nGPT: " + reply
if isBoss:
response += f"\n{gptModel}: {tokens} tokens"
if tokens > 40000:
response += "\n\nTHIS DIALOG IS GETTING TOO LONG. PLEASE RESTART CONVERSATION SOON."
past.append({"role":"assistant", "content": reply})
accessOk = False
for i in range(3):
try:
dataFile = new_func(user_window)
with open(dataFile, 'a') as f:
m = '4o'
if 'mini' in gptModel:
m = '4omini'
f.write(f'{user_window}: {tokens}-{m}\n')
accessOk = True
break
except Exception as e:
sleep(3)
if not accessOk:
response += f"\nDATA LOG FAILED, path = {dataFile}"
return [past, response , None, gptModel]
else:
return [[], "User name and/or password are incorrect", prompt, gptModel]
def new_func(user_window):
dataFile = dataDir + user_window + '_log.txt'
return dataFile
with gr.Blocks() as demo:
history = gr.State([])
password = gr.State("")
model = gr.State("gpt-4o-mini")
gr.Markdown('# GPT Chat')
gr.Markdown('Enter user name & password then enter prompt and click submit button. Restart conversation if topic changes')
# heading = gr.Label(value="GPT Chat", scale=2, color="Crimson" )
with gr.Row():
user_window = gr.Textbox(label = "User Name")
pwd_window = gr.Textbox(label = "Password")
pwd_window.blur(updatePassword, pwd_window, [password, pwd_window])
with gr.Row():
clear_button = gr.Button(value="Restart Conversation")
# gpt_chooser=gr.Radio(choices=[("GPT-3.5","gpt-3.5-turbo"),("GPT-4o","gpt-4o-mini")],
# value="gpt-3.5-turbo", label="GPT Model", interactive=True)
submit_window = gr.Button(value="Submit Prompt/Question")
prompt_window = gr.Textbox(label = "Prompt or Question")
output_window = gr.Textbox(label = "Dialog")
submit_window.click(chat, inputs=[prompt_window, user_window, password, history, output_window, model],
outputs=[history, output_window, prompt_window, model])
clear_button.click(clear, inputs=[], outputs=[prompt_window, history, output_window])
# gpt_chooser.input(fn=setModel, inputs=gpt_chooser, outputs=model)
demo.launch()