dljdd commited on
Commit
2328acf
·
1 Parent(s): 8d051ab

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +108 -0
app.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ st.header('My header')
4
+ import torch
5
+ import textwrap
6
+ from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, pipeline
7
+
8
+ # Install the required libraries
9
+ !pip install -q langchain transformers accelerate bitsandbytes
10
+
11
+ from langchain.chains import LLMChain, SequentialChain
12
+ from langchain.memory import ConversationBufferMemory
13
+ from langchain import HuggingFacePipeline
14
+ from langchain import PromptTemplate, LLMChain
15
+ from transformers import AutoModel
16
+ import transformers
17
+ from transformers import AutoTokenizer, AutoModelForCausalLM
18
+ import json
19
+
20
+ # Download the model (NousResearch's Llama2)
21
+ tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf")
22
+
23
+ model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-chat-hf",
24
+ device_map='auto',
25
+ torch_dtype=torch.float16,
26
+ load_in_4bit=True,
27
+ bnb_4bit_quant_type="nf4",
28
+ bnb_4bit_compute_dtype=torch.float16)
29
+
30
+ # Define Transformers pipeline
31
+ pipe = pipeline("text-generation",
32
+ model=model,
33
+ tokenizer=tokenizer,
34
+ torch_dtype=torch.float16,
35
+ device_map="auto",
36
+ max_new_tokens=4956,
37
+ do_sample=True,
38
+ top_k=30,
39
+ num_return_sequences=1,
40
+ eos_token_id=tokenizer.eos_token_id
41
+ )
42
+
43
+ # Define the prompt format
44
+ B_INST, E_INST = "[INST]", "[/INST]"
45
+ B_SYS, E_SYS = "<>\n", "\n<>\n\n"
46
+ DEFAULT_SYSTEM_PROMPT = """\
47
+ As the leader of a sizable team in a dynamic business, I'm tasked with improving our supply chain management process. Recently, we've been facing issues like increased costs, longer lead times, and decreased customer satisfaction, all of which we believe are interconnected. To address these challenges, I need your assistance in optimizing our supply chain management. Please provide insights, strategies, and best practices that can help us streamline our operations, reduce costs, improve efficiency, and ultimately enhance customer satisfaction. Additionally, consider the latest technologies and innovations that could be integrated into our supply chain to make it more agile and responsive to market demands. If you don't know the answer to a question, please don't share false information. Just say you don't know and you are sorry!"""
48
+
49
+ def get_prompt(instruction, new_system_prompt=DEFAULT_SYSTEM_PROMPT, citation=None):
50
+ SYSTEM_PROMPT = B_SYS + new_system_prompt + E_SYS
51
+ prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
52
+
53
+ if citation:
54
+ prompt_template += f"\n\nCitation: {citation}" # Insert citation here
55
+
56
+ return prompt_template
57
+
58
+ def cut_off_text(text, prompt):
59
+ cutoff_phrase = prompt
60
+ index = text.find(cutoff_phrase)
61
+ if index != -1:
62
+ return text[:index]
63
+ else:
64
+ return text
65
+
66
+ def remove_substring(string, substring):
67
+ return string.replace(substring, "")
68
+
69
+ def generate(text, citation=None):
70
+ prompt = get_prompt(text, citation=citation)
71
+ inputs = tokenizer(prompt, return_tensors="pt")
72
+ with torch.no_grad():
73
+ outputs = model.generate(**inputs,
74
+ max_length=4956,
75
+ eos_token_id=tokenizer.eos_token_id,
76
+ pad_token_id=tokenizer.eos_token_id,
77
+ )
78
+ final_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
79
+ final_outputs = cut_off_text(final_outputs, '')
80
+ final_outputs = remove_substring(final_outputs, prompt)
81
+
82
+ return final_outputs
83
+
84
+ def parse_text(text):
85
+ wrapped_text = textwrap.fill(text, width=100)
86
+ print(wrapped_text + '\n\n')
87
+
88
+ # Defining Langchain LLM
89
+ llm = HuggingFacePipeline(pipeline=pipe, model_kwargs={'temperature': 0.3, 'max_length': 4956, 'top_k': 50})
90
+
91
+ system_prompt = "You are an advanced supply chain optimization expert"
92
+ instruction = "Use the data provided to you to optimize the supply chain:\n\n {text}"
93
+ template = get_prompt(instruction, system_prompt)
94
+ print(template)
95
+
96
+ prompt = PromptTemplate(template=template, input_variables=["text"])
97
+
98
+ llm_chain = LLMChain(prompt=prompt, llm=llm, verbose=False)
99
+
100
+ import pandas as pd
101
+
102
+ # Assuming you have a CSV file named 'merged_data.csv'
103
+ df_supplier = pd.read_csv('merged_data.csv')
104
+
105
+ text = f"Based on the data provided how can you optimize my supply chain by prorviding me with the optmized solution as well as the techniques used. {df_supplier}"
106
+
107
+ response = llm_chain.run(text)
108
+ print(response)