import os import tempfile import torch import gradio as gr from transformers import pipeline MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(inputs, task="transcribe"): if inputs is None: raise gr.Error("No audio file submitted!") output = pipe( inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True ) return output["text"] demo = gr.Interface( fn=transcribe, inputs=["audio"], outputs="text", title="Transcribe Audio to Text", # Give our demo a title ) demo.launch()