Spaces:
Running
Running
File size: 9,400 Bytes
04ffec9 5ff06d1 04ffec9 5ff06d1 04ffec9 5ff06d1 04ffec9 5ff06d1 04ffec9 5baa66d 04ffec9 5baa66d 04ffec9 5baa66d 04ffec9 5ff06d1 04ffec9 5ff06d1 04ffec9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
from typing import Optional, Union, Dict
from bark.mode_load import BarkModelLoader, SAMPLE_RATE
from vits.modules import commons
from vits.text import text_to_sequence
from torch import LongTensor
from speakers.common.registry import registry
from speakers.processors import BaseProcessor, ProcessorData
import os
import logging
import numpy as np
import nltk # we'll use this to split into sentences
from nltk.tokenize import RegexpTokenizer
logger = logging.getLogger('bark_to_voice')
def set_bark_to_voice_logger(l):
global logger
logger = l
silence = np.zeros(int(0.25 * SAMPLE_RATE)) # quarter second of silence
def get_text(text, hps):
text_norm, clean_text = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm, clean_text
class BarkProcessorData(ProcessorData):
"""
:param text: 生成文本
:param speaker_history_prompt: 音频预设npz文件
:param text_temp: 提示特殊标记程序,趋近于1,提示词特殊标记越明显
:param waveform_temp: 提示隐藏空间转音频参数比例
"""
"""生成文本"""
text: str
"""音频预设npz文件"""
speaker_history_prompt: str
"""提示特殊标记程序,趋近于1,提示词特殊标记越明显"""
text_temp: float
"""提示隐藏空间转音频参数比例"""
waveform_temp: float
@property
def type(self) -> str:
"""Type of the Message, used for serialization."""
return "BARK"
@registry.register_processor("bark_to_voice")
class BarkToVoice(BaseProcessor):
def __init__(self,codec_repository_path: str, tokenizer_path: str, text_path: str, coarse_path: str, fine_path: str):
super().__init__()
self._load_bark_mode(codec_repository_path=codec_repository_path,
tokenizer_path=tokenizer_path,
text_path=text_path,
coarse_path=coarse_path,
fine_path=fine_path)
def __call__(
self,
data: BarkProcessorData
):
# 分词,适配长句子
script = data.text.replace("\n", "。").strip()
tokenizer = RegexpTokenizer(r'[^,。!?]+[,。!?]?')
sentences = tokenizer.tokenize(script)
pieces = []
logger.info(f"sentences:{sentences}")
for sentence in sentences:
audio_array = self._generate_audio(text=sentence,
history_prompt_dir=registry.get_path('bark_library_root'),
history_prompt=data.speaker_history_prompt,
text_temp=data.text_temp,
waveform_temp=data.waveform_temp)
pieces += [audio_array, silence.copy()]
audio_array_out = np.concatenate(pieces)
del pieces
return audio_array_out
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
raise RuntimeError("from_config cfg is None.")
codec_repository_path = cfg.get("codec_repository_path", "")
tokenizer_path = cfg.get("tokenizer_path", "")
text_model_path = cfg.get("text_model_path", "")
coarse_model_path = cfg.get("coarse_model_path", "")
fine_model_path = cfg.get("fine_model_path", "")
return cls(codec_repository_path=os.path.join(registry.get_path("bark_library_root"),
codec_repository_path),
tokenizer_path=os.path.join(registry.get_path("bark_library_root"),
tokenizer_path),
text_path=os.path.join(registry.get_path("bark_library_root"),
text_model_path),
coarse_path=os.path.join(registry.get_path("bark_library_root"),
coarse_model_path),
fine_path=os.path.join(registry.get_path("bark_library_root"),
fine_model_path)
)
def match(self, data: ProcessorData):
return "BARK" in data.type
def _load_bark_mode(self, codec_repository_path: str, tokenizer_path: str, text_path: str, coarse_path: str, fine_path: str):
logger.info(f'Bark model loading')
self.bark_load = BarkModelLoader(codec_repository_path=codec_repository_path,
tokenizer_path=tokenizer_path,
text_path=text_path,
coarse_path=coarse_path,
fine_path=fine_path,
device=registry.get("device"))
logger.info(f'Models loaded bark')
def _generate_audio(
self,
text: str,
history_prompt: Optional[str] = None,
history_prompt_dir: str = None,
text_temp: float = 0.7,
waveform_temp: float = 0.7,
fine_temp: float = 0.5,
silent: bool = False,
output_full: bool = False):
"""Generate audio array from input text.
Args:
text: text to be turned into audio
history_prompt: history choice for audio cloning
text_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
waveform_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
fine_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
silent: disable progress bar
output_full: return full generation to be used as a history prompt
Returns:
numpy audio array at sample frequency 24khz
"""
semantic_tokens = self._text_to_semantic(
text,
history_prompt=history_prompt,
history_prompt_dir=history_prompt_dir,
temp=text_temp,
silent=silent,
)
out = self._semantic_to_waveform(
semantic_tokens,
history_prompt=history_prompt,
history_prompt_dir=history_prompt_dir,
temp=waveform_temp,
fine_temp=fine_temp,
silent=silent,
output_full=output_full,
)
if output_full:
full_generation, audio_arr = out
return full_generation, audio_arr
else:
audio_arr = out
return audio_arr
def _text_to_semantic(
self,
text: str,
history_prompt: Optional[str] = None,
history_prompt_dir=None,
temp: float = 0.7,
silent: bool = False,
):
"""Generate semantic array from text.
Args:
text: text to be turned into audio
history_prompt: history choice for audio cloning
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
silent: disable progress bar
Returns:
numpy semantic array to be fed into `semantic_to_waveform`
"""
x_semantic = self.bark_load.generate_text_semantic(
text,
history_prompt=history_prompt,
history_prompt_dir=history_prompt_dir,
temp=temp,
silent=silent,
use_kv_caching=True
)
return x_semantic
def _semantic_to_waveform(
self,
semantic_tokens: np.ndarray,
history_prompt: Optional[Union[Dict, str]] = None,
history_prompt_dir: str = None,
temp: float = 0.7,
fine_temp: float = 0.5,
silent: bool = False,
output_full: bool = False,
):
"""Generate audio array from semantic input.
Args:
semantic_tokens: semantic token output from `text_to_semantic`
history_prompt: history choice for audio cloning
fine_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
silent: disable progress bar
output_full: return full generation to be used as a history prompt
Returns:
numpy audio array at sample frequency 24khz
"""
coarse_tokens = self.bark_load.generate_coarse(
semantic_tokens,
history_prompt=history_prompt,
history_prompt_dir=history_prompt_dir,
temp=temp,
silent=silent,
use_kv_caching=True
)
fine_tokens = self.bark_load.generate_fine(
coarse_tokens,
history_prompt=history_prompt,
history_prompt_dir=history_prompt_dir,
temp=fine_temp,
)
audio_arr = self.bark_load.codec_decode(fine_tokens)
if output_full:
full_generation = {
"semantic_prompt": semantic_tokens,
"coarse_prompt": coarse_tokens,
"fine_prompt": fine_tokens,
}
return full_generation, audio_arr
return audio_arr
|