Spaces:
Running
Running
from typing import Dict | |
from speakers.processors import BaseProcessor, get_processors, EdgeProcessorData, RvcProcessorData | |
from speakers.tasks import BaseTask, Runner, FlowData | |
from speakers.common.registry import registry | |
from speakers.server.model.flow_data import PayLoad | |
import traceback | |
import hashlib | |
def calculate_md5(input_string): | |
md5_hash = hashlib.md5() | |
md5_hash.update(input_string.encode('utf-8')) | |
return md5_hash.hexdigest() | |
class EdgeVoiceFlowData(FlowData): | |
edge: EdgeProcessorData | |
rvc: RvcProcessorData | |
def type(self) -> str: | |
"""Type of the FlowData Message, used for serialization.""" | |
return "edge_voice" | |
class EdgeVoiceTask(BaseTask): | |
def __init__(self, preprocess_dict: Dict[str, BaseProcessor]): | |
super().__init__(preprocess_dict=preprocess_dict) | |
self._preprocess_dict = preprocess_dict | |
def from_config(cls, cfg=None): | |
preprocess_dict = {} | |
for preprocess in cfg.get('preprocess'): | |
for key, preprocess_info in preprocess.items(): | |
preprocess_object = get_processors(preprocess_info.processor) | |
preprocess_dict[preprocess_info.processor_name] = preprocess_object | |
return cls(preprocess_dict=preprocess_dict) | |
def preprocess_dict(self) -> Dict[str, BaseProcessor]: | |
return self._preprocess_dict | |
def prepare(cls, payload: PayLoad) -> Runner: | |
""" | |
runner任务构建 | |
""" | |
params = payload.payload | |
# 获取payload中的edge和rvc的值 | |
edge_data = params.get("edge", {}) | |
rvc_data = params.get("rvc", {}) | |
# edge 讲话人 | |
tts_speaker = edge_data.get("tts_speaker") | |
text = edge_data.get("text") | |
rate = edge_data.get("rate") | |
volume = edge_data.get("volume") | |
# 创建一个 EdgeProcessorData 实例 | |
edge_processor_data = EdgeProcessorData(text=text, | |
tts_speaker=tts_speaker, | |
rate=rate, | |
volume=volume) | |
# 获取rvc中的值 | |
model_index = rvc_data.get("model_index") | |
# 变调(整数, 半音数量, 升八度12降八度-12) | |
f0_up_key = rvc_data.get("f0_up_key") | |
f0_method = rvc_data.get("f0_method") | |
# 检索特征占比 | |
index_rate = rvc_data.get("index_rate") | |
# >=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音 | |
filter_radius = rvc_data.get("filter_radius") | |
# 输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络 | |
rms_mix_rate = rvc_data.get("rms_mix_rate") | |
# 后处理重采样至最终采样率,0为不进行重采样 | |
resample_rate = rvc_data.get("resample_sr") | |
rvc_protect = rvc_data.get("protect") | |
rvc_f0_file = rvc_data.get("f0_file") | |
rvc_processor_data = RvcProcessorData( | |
model_index=model_index, | |
f0_up_key=f0_up_key, | |
f0_method=f0_method, | |
index_rate=index_rate, | |
filter_radius=filter_radius, | |
rms_mix_rate=rms_mix_rate, | |
resample_sr=resample_rate, | |
f0_file=rvc_f0_file, | |
protect=rvc_protect | |
) | |
# 创建一个 EdgeVoiceFlowData 实例,并将 EdgeProcessorData 实例作为参数传递 | |
voice_flow_data = EdgeVoiceFlowData(edge=edge_processor_data, | |
rvc=rvc_processor_data) | |
# 创建 Runner 实例并传递上面创建的 EdgeVoiceFlowData 实例作为参数 | |
task_id = f'{calculate_md5(text)}-{tts_speaker}'\ | |
f'-{rate}-{volume}'\ | |
f'-{model_index}-{f0_up_key}' | |
runner = Runner( | |
task_id=task_id, | |
flow_data=voice_flow_data | |
) | |
return runner | |
async def dispatch(self, runner: Runner): | |
try: | |
# 加载task | |
self.logger.info('dispatch') | |
# 开启任务1 | |
await self.report_progress(task_id=runner.task_id, runner_stat='edge_voice_task', | |
state='dispatch_edge_voice_task') | |
data = runner.flow_data | |
if 'edge_voice' in data.type: | |
if 'EDGE' in data.edge.type: | |
edge_preprocess_object = self.preprocess_dict.get(data.edge.type) | |
if not edge_preprocess_object.match(data.edge): | |
raise RuntimeError('不支持的process') | |
tts_np, tts_sr = edge_preprocess_object(data.edge) | |
if tts_np is not None and 'RVC' in data.rvc.type: | |
# 将 NumPy 数组转换为 Python 列表 | |
audio_samples_list = tts_np.tolist() | |
data.rvc.sample_rate = tts_sr | |
data.rvc.audio_samples = audio_samples_list | |
rvc_preprocess_object = self.preprocess_dict.get(data.rvc.type) | |
if not rvc_preprocess_object.match(data.rvc): | |
raise RuntimeError('不支持的process') | |
out_sr, output_audio = rvc_preprocess_object(data.rvc) | |
# 完成任务,构建响应数据 | |
await self.report_progress(task_id=runner.task_id, | |
runner_stat='edge_voice_task', | |
state='finished', | |
finished=True) | |
del tts_np | |
del tts_sr | |
del runner | |
return out_sr, output_audio | |
except Exception as e: | |
await self.report_progress(task_id=runner.task_id, runner_stat='edge_voice_task', | |
state='error', finished=True) | |
self.logger.error(f'{e.__class__.__name__}: {e}', | |
exc_info=e) | |
traceback.print_exc() | |
return None, None | |
def complete(self, runner: Runner): | |
pass | |