RVC-Speakers / speakers /tasks /edge_voice_task.py
glide-the
Add application file
1f3bd14
from typing import Dict
from speakers.processors import BaseProcessor, get_processors, EdgeProcessorData, RvcProcessorData
from speakers.tasks import BaseTask, Runner, FlowData
from speakers.common.registry import registry
from speakers.server.model.flow_data import PayLoad
import traceback
import hashlib
def calculate_md5(input_string):
md5_hash = hashlib.md5()
md5_hash.update(input_string.encode('utf-8'))
return md5_hash.hexdigest()
class EdgeVoiceFlowData(FlowData):
edge: EdgeProcessorData
rvc: RvcProcessorData
@property
def type(self) -> str:
"""Type of the FlowData Message, used for serialization."""
return "edge_voice"
@registry.register_task("edge_voice_task")
class EdgeVoiceTask(BaseTask):
def __init__(self, preprocess_dict: Dict[str, BaseProcessor]):
super().__init__(preprocess_dict=preprocess_dict)
self._preprocess_dict = preprocess_dict
@classmethod
def from_config(cls, cfg=None):
preprocess_dict = {}
for preprocess in cfg.get('preprocess'):
for key, preprocess_info in preprocess.items():
preprocess_object = get_processors(preprocess_info.processor)
preprocess_dict[preprocess_info.processor_name] = preprocess_object
return cls(preprocess_dict=preprocess_dict)
@property
def preprocess_dict(self) -> Dict[str, BaseProcessor]:
return self._preprocess_dict
@classmethod
def prepare(cls, payload: PayLoad) -> Runner:
"""
runner任务构建
"""
params = payload.payload
# 获取payload中的edge和rvc的值
edge_data = params.get("edge", {})
rvc_data = params.get("rvc", {})
# edge 讲话人
tts_speaker = edge_data.get("tts_speaker")
text = edge_data.get("text")
rate = edge_data.get("rate")
volume = edge_data.get("volume")
# 创建一个 EdgeProcessorData 实例
edge_processor_data = EdgeProcessorData(text=text,
tts_speaker=tts_speaker,
rate=rate,
volume=volume)
# 获取rvc中的值
model_index = rvc_data.get("model_index")
# 变调(整数, 半音数量, 升八度12降八度-12)
f0_up_key = rvc_data.get("f0_up_key")
f0_method = rvc_data.get("f0_method")
# 检索特征占比
index_rate = rvc_data.get("index_rate")
# >=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音
filter_radius = rvc_data.get("filter_radius")
# 输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络
rms_mix_rate = rvc_data.get("rms_mix_rate")
# 后处理重采样至最终采样率,0为不进行重采样
resample_rate = rvc_data.get("resample_sr")
rvc_protect = rvc_data.get("protect")
rvc_f0_file = rvc_data.get("f0_file")
rvc_processor_data = RvcProcessorData(
model_index=model_index,
f0_up_key=f0_up_key,
f0_method=f0_method,
index_rate=index_rate,
filter_radius=filter_radius,
rms_mix_rate=rms_mix_rate,
resample_sr=resample_rate,
f0_file=rvc_f0_file,
protect=rvc_protect
)
# 创建一个 EdgeVoiceFlowData 实例,并将 EdgeProcessorData 实例作为参数传递
voice_flow_data = EdgeVoiceFlowData(edge=edge_processor_data,
rvc=rvc_processor_data)
# 创建 Runner 实例并传递上面创建的 EdgeVoiceFlowData 实例作为参数
task_id = f'{calculate_md5(text)}-{tts_speaker}'\
f'-{rate}-{volume}'\
f'-{model_index}-{f0_up_key}'
runner = Runner(
task_id=task_id,
flow_data=voice_flow_data
)
return runner
async def dispatch(self, runner: Runner):
try:
# 加载task
self.logger.info('dispatch')
# 开启任务1
await self.report_progress(task_id=runner.task_id, runner_stat='edge_voice_task',
state='dispatch_edge_voice_task')
data = runner.flow_data
if 'edge_voice' in data.type:
if 'EDGE' in data.edge.type:
edge_preprocess_object = self.preprocess_dict.get(data.edge.type)
if not edge_preprocess_object.match(data.edge):
raise RuntimeError('不支持的process')
tts_np, tts_sr = edge_preprocess_object(data.edge)
if tts_np is not None and 'RVC' in data.rvc.type:
# 将 NumPy 数组转换为 Python 列表
audio_samples_list = tts_np.tolist()
data.rvc.sample_rate = tts_sr
data.rvc.audio_samples = audio_samples_list
rvc_preprocess_object = self.preprocess_dict.get(data.rvc.type)
if not rvc_preprocess_object.match(data.rvc):
raise RuntimeError('不支持的process')
out_sr, output_audio = rvc_preprocess_object(data.rvc)
# 完成任务,构建响应数据
await self.report_progress(task_id=runner.task_id,
runner_stat='edge_voice_task',
state='finished',
finished=True)
del tts_np
del tts_sr
del runner
return out_sr, output_audio
except Exception as e:
await self.report_progress(task_id=runner.task_id, runner_stat='edge_voice_task',
state='error', finished=True)
self.logger.error(f'{e.__class__.__name__}: {e}',
exc_info=e)
traceback.print_exc()
return None, None
def complete(self, runner: Runner):
pass