File size: 7,445 Bytes
9a7fe1f 8773294 9a7fe1f 8773294 9a7fe1f 8773294 9a7fe1f 8773294 9a7fe1f 8773294 9a7fe1f 8773294 9a7fe1f 8773294 9a7fe1f 168a510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
"""
https://github.com/SHI-Labs/Versatile-Diffusion
"""
import torch
import numpy as np
from tqdm import tqdm
from functools import partial
import streamlit as st
from .diffusion_utils import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
from .ddim import DDIMSampler
class DDIMSampler_VD(DDIMSampler):
@torch.no_grad()
def sample(self,
steps,
shape,
xt=None,
condition=None,
unconditional_guidance_scale=1.,
xtype='image',
condition_types=['text'],
eta=0.,
temperature=1.,
mix_weight=None,
noise_dropout=0.,
verbose=True,
log_every_t=100,
progress_bar=False, ):
self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose)
print(f'Data shape for DDIM sampling is {shape}, eta {eta}')
samples, intermediates = self.ddim_sampling(
shape,
xt=xt,
condition=condition,
unconditional_guidance_scale=unconditional_guidance_scale,
xtype=xtype,
condition_types=condition_types,
ddim_use_original_steps=False,
noise_dropout=noise_dropout,
temperature=temperature,
log_every_t=log_every_t,
mix_weight=mix_weight,
progress_bar=progress_bar, )
return samples, intermediates
@torch.no_grad()
def ddim_sampling(self,
shape,
xt=None,
condition=None,
unconditional_guidance_scale=1.,
xtype=['image'],
condition_types=['text'],
ddim_use_original_steps=False,
timesteps=None,
noise_dropout=0.,
temperature=1.,
mix_weight=None,
log_every_t=100,
progress_bar=False,):
device = self.model.device
dtype = condition[0][0].dtype
if isinstance(shape[0], list):
bs = shape[0][0]
else:
bs = shape[0]
if xt is None:
if isinstance(shape[0], list):
xt = [torch.randn(shape_i, device=device, dtype=dtype) for shape_i in shape]
else:
xt = torch.randn(shape, device=device, dtype=dtype)
if timesteps is None:
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
elif timesteps is not None and not ddim_use_original_steps:
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
timesteps = self.ddim_timesteps[:subset_end]
intermediates = {'pred_xt': [], 'pred_x0': []}
time_range = reversed(range(0, timesteps)) if ddim_use_original_steps else np.flip(timesteps)
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
# print(f"Running DDIM Sampling with {total_steps} timesteps")
pred_xt = xt
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
if progress_bar is not None:
progress_bar.progress(0)
progress_bar.text("Generating samples...")
for i, step in enumerate(iterator):
if progress_bar is not None:
progress_bar.progress(i/total_steps)
index = total_steps - i - 1
ts = torch.full((bs,), step, device=device, dtype=torch.long)
outs = self.p_sample_ddim(
pred_xt,
condition,
ts, index,
unconditional_guidance_scale=unconditional_guidance_scale,
xtype=xtype,
condition_types=condition_types,
use_original_steps=ddim_use_original_steps,
noise_dropout=noise_dropout,
temperature=temperature,
mix_weight=mix_weight, )
pred_xt, pred_x0 = outs
if index % log_every_t == 0 or index == total_steps - 1:
intermediates['pred_xt'].append(pred_xt)
intermediates['pred_x0'].append(pred_x0)
if progress_bar is not None:
progress_bar.success("Sampling complete.")
return pred_xt, intermediates
@torch.no_grad()
def p_sample_ddim(self, x,
condition,
t, index,
unconditional_guidance_scale=1.,
xtype=['image'],
condition_types=['text'],
repeat_noise=False,
use_original_steps=False,
noise_dropout=0.,
temperature=1.,
mix_weight=None, ):
b, *_, device = *x[0].shape, x[0].device
x_in = []
for x_i in x:
x_in.append(torch.cat([x_i] * 2))
t_in = torch.cat([t] * 2)
out = self.model.model.diffusion_model(
x_in, t_in, condition, xtype=xtype, condition_types=condition_types, mix_weight=mix_weight)
e_t = []
for out_i in out:
e_t_uncond_i, e_t_i = out_i.chunk(2)
e_t_i = e_t_uncond_i + unconditional_guidance_scale * (e_t_i - e_t_uncond_i)
e_t_i = e_t_i.to(device)
e_t.append(e_t_i)
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
# select parameters corresponding to the currently considered timestep
x_prev = []
pred_x0 = []
device = x[0].device
dtype = x[0].dtype
for i, xtype_i in enumerate(xtype):
if xtype_i in ['image', 'frontal', 'lateral']:
extended_shape = (b, 1, 1, 1)
elif xtype_i == 'video':
extended_shape = (b, 1, 1, 1, 1)
elif xtype_i == 'text':
extended_shape = (b, 1)
elif xtype_i == 'audio':
extended_shape = (b, 1, 1, 1)
a_t = torch.full(extended_shape, alphas[index], device=device, dtype=dtype)
a_prev = torch.full(extended_shape, alphas_prev[index], device=device, dtype=dtype)
sigma_t = torch.full(extended_shape, sigmas[index], device=device, dtype=dtype)
sqrt_one_minus_at = torch.full(extended_shape, sqrt_one_minus_alphas[index], device=device, dtype=dtype)
# current prediction for x_0
pred_x0_i = (x[i] - sqrt_one_minus_at * e_t[i]) / a_t.sqrt()
dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * e_t[i]
noise = sigma_t * noise_like(x[i], repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev_i = a_prev.sqrt() * pred_x0_i + dir_xt + noise
x_prev.append(x_prev_i)
pred_x0.append(pred_x0_i)
return x_prev, pred_x0
|