File size: 7,445 Bytes
9a7fe1f
 
 
 
 
 
 
 
8773294
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8773294
 
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
8773294
 
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8773294
 
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8773294
 
 
9a7fe1f
8773294
 
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8773294
 
 
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168a510
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
https://github.com/SHI-Labs/Versatile-Diffusion
"""

import torch
import numpy as np
from tqdm import tqdm
from functools import partial
import streamlit as st

from .diffusion_utils import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like

from .ddim import DDIMSampler


class DDIMSampler_VD(DDIMSampler):
    @torch.no_grad()
    def sample(self,
               steps,
               shape,
               xt=None,
               condition=None,
               unconditional_guidance_scale=1.,
               xtype='image',
               condition_types=['text'],
               eta=0.,
               temperature=1.,
               mix_weight=None,
               noise_dropout=0.,
               verbose=True,
               log_every_t=100,
               progress_bar=False, ):

        self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose)
        print(f'Data shape for DDIM sampling is {shape}, eta {eta}')
        samples, intermediates = self.ddim_sampling(
            shape,
            xt=xt,
            condition=condition,
            unconditional_guidance_scale=unconditional_guidance_scale,
            xtype=xtype,
            condition_types=condition_types,
            ddim_use_original_steps=False,
            noise_dropout=noise_dropout,
            temperature=temperature,
            log_every_t=log_every_t,
            mix_weight=mix_weight,
            progress_bar=progress_bar, )
        return samples, intermediates

    @torch.no_grad()
    def ddim_sampling(self,
                      shape,
                      xt=None,
                      condition=None,
                      unconditional_guidance_scale=1.,
                      xtype=['image'],
                      condition_types=['text'],
                      ddim_use_original_steps=False,
                      timesteps=None,
                      noise_dropout=0.,
                      temperature=1.,
                      mix_weight=None,
                      log_every_t=100,
                      progress_bar=False,):

        device = self.model.device
        dtype = condition[0][0].dtype

        if isinstance(shape[0], list):
            bs = shape[0][0]
        else:
            bs = shape[0]
        if xt is None:
            if isinstance(shape[0], list):
                xt = [torch.randn(shape_i, device=device, dtype=dtype) for shape_i in shape]
            else:
                xt = torch.randn(shape, device=device, dtype=dtype)

        if timesteps is None:
            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
        elif timesteps is not None and not ddim_use_original_steps:
            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
            timesteps = self.ddim_timesteps[:subset_end]

        intermediates = {'pred_xt': [], 'pred_x0': []}
        time_range = reversed(range(0, timesteps)) if ddim_use_original_steps else np.flip(timesteps)
        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
        # print(f"Running DDIM Sampling with {total_steps} timesteps")

        pred_xt = xt
        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
        if progress_bar is not None:
            progress_bar.progress(0)
            progress_bar.text("Generating samples...")
        for i, step in enumerate(iterator):
            if progress_bar is not None:
                progress_bar.progress(i/total_steps)
            index = total_steps - i - 1
            ts = torch.full((bs,), step, device=device, dtype=torch.long)

            outs = self.p_sample_ddim(
                pred_xt,
                condition,
                ts, index,
                unconditional_guidance_scale=unconditional_guidance_scale,
                xtype=xtype,
                condition_types=condition_types,
                use_original_steps=ddim_use_original_steps,
                noise_dropout=noise_dropout,
                temperature=temperature,
                mix_weight=mix_weight, )
            pred_xt, pred_x0 = outs

            if index % log_every_t == 0 or index == total_steps - 1:
                intermediates['pred_xt'].append(pred_xt)
                intermediates['pred_x0'].append(pred_x0)

        if progress_bar is not None:
            progress_bar.success("Sampling complete.")

        return pred_xt, intermediates

    @torch.no_grad()
    def p_sample_ddim(self, x,
                      condition,
                      t, index,
                      unconditional_guidance_scale=1.,
                      xtype=['image'],
                      condition_types=['text'],
                      repeat_noise=False,
                      use_original_steps=False,
                      noise_dropout=0.,
                      temperature=1.,
                      mix_weight=None, ):

        b, *_, device = *x[0].shape, x[0].device

        x_in = []
        for x_i in x:
            x_in.append(torch.cat([x_i] * 2))
        t_in = torch.cat([t] * 2)

        out = self.model.model.diffusion_model(
            x_in, t_in, condition, xtype=xtype, condition_types=condition_types, mix_weight=mix_weight)
        e_t = []
        for out_i in out:
            e_t_uncond_i, e_t_i = out_i.chunk(2)
            e_t_i = e_t_uncond_i + unconditional_guidance_scale * (e_t_i - e_t_uncond_i)
            e_t_i = e_t_i.to(device)
            e_t.append(e_t_i)

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
        # select parameters corresponding to the currently considered timestep

        x_prev = []
        pred_x0 = []
        device = x[0].device
        dtype = x[0].dtype
        for i, xtype_i in enumerate(xtype):
            if xtype_i in ['image', 'frontal', 'lateral']:
                extended_shape = (b, 1, 1, 1)
            elif xtype_i == 'video':
                extended_shape = (b, 1, 1, 1, 1)
            elif xtype_i == 'text':
                extended_shape = (b, 1)
            elif xtype_i == 'audio':
                extended_shape = (b, 1, 1, 1)

            a_t = torch.full(extended_shape, alphas[index], device=device, dtype=dtype)
            a_prev = torch.full(extended_shape, alphas_prev[index], device=device, dtype=dtype)
            sigma_t = torch.full(extended_shape, sigmas[index], device=device, dtype=dtype)
            sqrt_one_minus_at = torch.full(extended_shape, sqrt_one_minus_alphas[index], device=device, dtype=dtype)

            # current prediction for x_0
            pred_x0_i = (x[i] - sqrt_one_minus_at * e_t[i]) / a_t.sqrt()
            dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * e_t[i]
            noise = sigma_t * noise_like(x[i], repeat_noise) * temperature
            if noise_dropout > 0.:
                noise = torch.nn.functional.dropout(noise, p=noise_dropout)
            x_prev_i = a_prev.sqrt() * pred_x0_i + dir_xt + noise
            x_prev.append(x_prev_i)
            pred_x0.append(pred_x0_i)
        return x_prev, pred_x0