File size: 9,179 Bytes
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168a510
9a7fe1f
 
168a510
 
9a7fe1f
 
 
 
168a510
9a7fe1f
 
 
 
 
 
 
168a510
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from typing import Dict, List
import os

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
import copy
from functools import partial
from contextlib import contextmanager

from .common.get_model import get_model, register
from .sd import DDPM

version = '0'
symbol = 'codi'
    
    
@register('codi', version)
class CoDi(DDPM):
    def __init__(self,
                 audioldm_cfg=None,
                 autokl_cfg=None,
                 optimus_cfg=None,
                 clip_cfg=None,
                 clap_cfg=None,
                 vision_scale_factor=0.1812,
                 text_scale_factor=4.3108,
                 audio_scale_factor=0.9228,
                 scale_by_std=False,
                 *args, 
                 **kwargs):
        super().__init__(*args, **kwargs)

        if audioldm_cfg is not None:
            self.audioldm = get_model()(audioldm_cfg)

        if autokl_cfg is not None:
            self.autokl = get_model()(autokl_cfg)

        if optimus_cfg is not None:
            self.optimus = get_model()(optimus_cfg)

        if clip_cfg is not None:
            self.clip = get_model()(clip_cfg)

        if clap_cfg is not None:
            self.clap = get_model()(clap_cfg)
        
        if not scale_by_std:
            self.vision_scale_factor = vision_scale_factor
            self.text_scale_factor = text_scale_factor
            self.audio_scale_factor = audio_scale_factor
        else:
            self.register_buffer("text_scale_factor", torch.tensor(text_scale_factor))
            self.register_buffer("audio_scale_factor", torch.tensor(audio_scale_factor))
            self.register_buffer('vision_scale_factor', torch.tensor(vision_scale_factor))
            
    @property
    def device(self):
        return next(self.parameters()).device
            
    @torch.no_grad()
    def autokl_encode(self, image):
        encoder_posterior = self.autokl.encode(image)
        z = encoder_posterior.sample().to(image.dtype)
        return self.vision_scale_factor * z

    @torch.no_grad()
    def autokl_decode(self, z):
        z = 1. / self.vision_scale_factor * z
        return self.autokl.decode(z)

    @torch.no_grad()
    def optimus_encode(self, text):
        if isinstance(text, List):
            token = [self.optimus.tokenizer_encoder.tokenize(sentence.lower()) for sentence in text]
            token_id = []
            for tokeni in token:
                token_sentence = [self.optimus.tokenizer_encoder._convert_token_to_id(i) for i in tokeni]
                token_sentence = self.optimus.tokenizer_encoder.add_special_tokens_single_sentence(token_sentence)
                token_id.append(torch.LongTensor(token_sentence))
            token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0)[:, :512]
        else:
            token_id = text
        token_id = token_id.to(self.device)
        z = self.optimus.encoder(token_id, attention_mask=(token_id > 0))[1]
        z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1)
        return z_mu.squeeze(1) * self.text_scale_factor

    @torch.no_grad()
    def optimus_decode(self, z, temperature=1.0, max_length=30):
        z = 1.0 / self.text_scale_factor * z
        z = z.to(self.device)
        return self.optimus.decode(z, temperature, max_length=max_length)
    
    @torch.no_grad()
    def audioldm_encode(self, audio, time=2.0):
        encoder_posterior = self.audioldm.encode(audio, time=time)
        z = encoder_posterior.sample().to(audio.dtype)
        return z * self.audio_scale_factor

    @torch.no_grad()
    def audioldm_decode(self, z):
        if torch.max(torch.abs(z)) > 1e2:
            z = torch.clip(z, min=-10, max=10)
        z = 1.0 / self.audio_scale_factor * z
        return self.audioldm.decode(z)
    
    @torch.no_grad()
    def mel_spectrogram_to_waveform(self, mel):
        # Mel: [bs, 1, t-steps, fbins]
        if len(mel.size()) == 4:
            mel = mel.squeeze(1)
        mel = mel.permute(0, 2, 1)
        waveform = self.audioldm.vocoder(mel)
        waveform = waveform.cpu().detach().numpy()
        return waveform

    @torch.no_grad()
    def clip_encode_text(self, text, encode_type='encode_text'):
        swap_type = self.clip.encode_type
        self.clip.encode_type = encode_type
        embedding = self.clip(text, encode_type)
        self.clip.encode_type = swap_type
        return embedding

    @torch.no_grad()
    def clip_encode_vision(self, vision, encode_type='encode_vision'):
        swap_type = self.clip.encode_type
        self.clip.encode_type = encode_type
        embedding = self.clip(vision, encode_type)
        self.clip.encode_type = swap_type
        return embedding
    
    @torch.no_grad()
    def clap_encode_audio(self, audio):
        embedding = self.clap(audio)
        return embedding

    def forward(self, x=None, c=None, noise=None, xtype='image', ctype='prompt', u=None, return_algined_latents=False):
        if isinstance(x, list):
            t = torch.randint(0, self.num_timesteps, (x[0].shape[0],), device=x[0].device).long()
        else:
            t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
        return self.p_losses(x, c, t, noise, xtype, ctype, u, return_algined_latents)

    def apply_model(self, x_noisy, t, cond, xtype='image', ctype='text', u=None, return_algined_latents=False):
        return self.model.diffusion_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents)

    def get_pixel_loss(self, pred, target, mean=True):
        if self.loss_type == 'l1':
            loss = (target - pred).abs()
            if mean:
                loss = loss.mean()
        elif self.loss_type == 'l2':
            if mean:
                loss = torch.nn.functional.mse_loss(target, pred)
            else:
                loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
        else:
            raise NotImplementedError("unknown loss type '{loss_type}'")
        loss = torch.nan_to_num(loss, nan=0.0, posinf=0.0, neginf=-0.0)
        return loss

    def get_text_loss(self, pred, target):
        if self.loss_type == 'l1':
            loss = (target - pred).abs()
        elif self.loss_type == 'l2':
            loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
        loss = torch.nan_to_num(loss, nan=0.0, posinf=0.0, neginf=0.0)    
        return loss

    def p_losses(self, x_start, cond, t, noise=None, xtype='image', ctype='prompt', u=None, return_algined_latents=False):
        if isinstance(x_start, list):
            noise = [torch.randn_like(x_start_i) for x_start_i in x_start] if noise is None else noise
            x_noisy = [self.q_sample(x_start=x_start_i, t=t, noise=noise_i) for x_start_i, noise_i in zip(x_start, noise)]
            model_output = self.apply_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents)
            if return_algined_latents:
                return model_output
            
            loss_dict = {}

            if self.parameterization == "x0":
                target = x_start
            elif self.parameterization == "eps":
                target = noise
            else:
                raise NotImplementedError()
            
            loss = 0.0
            for model_output_i, target_i, xtype_i in zip(model_output, target, xtype):
                if xtype_i == 'image':
                    loss_simple = self.get_pixel_loss(model_output_i, target_i, mean=False).mean([1, 2, 3])
                elif xtype_i == 'video':
                    loss_simple = self.get_pixel_loss(model_output_i, target_i, mean=False).mean([1, 2, 3, 4])
                elif xtype_i == 'text':
                    loss_simple = self.get_text_loss(model_output_i, target_i).mean([1])
                elif xtype_i == 'audio':
                    loss_simple = self.get_pixel_loss(model_output_i, target_i, mean=False).mean([1, 2, 3])
                loss += loss_simple.mean()
            return loss / len(xtype)
        
        else:    
            noise = torch.randn_like(x_start) if noise is None else noise
            x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
            model_output = self.apply_model(x_noisy, t, cond, xtype, ctype)

            loss_dict = {}

            if self.parameterization == "x0":
                target = x_start
            elif self.parameterization == "eps":
                target = noise
            else:
                raise NotImplementedError()

            if xtype == 'image':
                loss_simple = self.get_pixel_loss(model_output, target, mean=False).mean([1, 2, 3])
            elif xtype == 'video':
                loss_simple = self.get_pixel_loss(model_output, target, mean=False).mean([1, 2, 3, 4])
            elif xtype == 'text':
                loss_simple = self.get_text_loss(model_output, target).mean([1])
            elif xtype == 'audio':
                loss_simple = self.get_pixel_loss(model_output, target, mean=False).mean([1, 2, 3])
            loss = loss_simple.mean()
            return loss