File size: 4,540 Bytes
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import torch.nn as nn
import torchaudio

from .clap_modules.open_clip import create_model
from .clap_modules.training.data import get_audio_features

from ..common.get_model import register 


@register('clap_audio')
class CLAPAudioEmbeddingClassifierFreev2(nn.Module):
    """Uses the CLAP audio encoder"""
    def __init__(
        self,
        pretrained_path="",
        key="waveform",
        sampling_rate=16000,
        embed_mode="audio",
        unconditional_prob=0.1,
        random_mute=False,
        max_random_mute_portion=0.5,
        training_mode=True,
        joint_embed_shape=768,
        embed_shape=512,
        num_layers=12,
        depths=[2, 2, 6, 2],
        amodel="HTSAT-large",
    ):
        super().__init__()

        self.key = key
        self.amodel = amodel  # or 'PANN-14'
        self.tmodel = "roberta"  # the best text encoder in our training
        self.enable_fusion = False  # False if you do not want to use the fusion model
        self.fusion_type = "aff_2d"
        self.pretrained = pretrained_path
        self.embed_mode = embed_mode
        self.embed_mode_orig = embed_mode
        self.sampling_rate = sampling_rate
        self.unconditional_prob = unconditional_prob
        self.random_mute = random_mute
        self.joint_embed_shape = joint_embed_shape
        self.max_random_mute_portion = max_random_mute_portion
        self.training_mode = training_mode
        self.model, self.model_cfg = create_model(
            self.amodel,
            self.tmodel,
            self.pretrained,
            precision="fp32",
            device="cpu",
            enable_fusion=self.enable_fusion,
            fusion_type=self.fusion_type,
            joint_embed_shape=self.joint_embed_shape,
        )

    def get_dtype(self):
        return next(self.model.parameters()).dtype
    
    def get_unconditional_condition(self, batchsize):
        self.unconditional_token = self.model.get_text_embedding(
            self.tokenizer(["", ""])
        )[0:1]
        return torch.cat([self.unconditional_token.unsqueeze(0)] * batchsize, dim=0)

    def batch_to_list(self, batch):
        ret = []
        for i in range(batch.size(0)):
            ret.append(batch[i])
        return ret

    def make_decision(self, probability):
        if float(torch.rand(1)) < probability:
            return True
        else:
            return False

    def random_uniform(self, start, end):
        val = torch.rand(1).item()
        return start + (end - start) * val

    def _random_mute(self, waveform):
        # waveform: [bs, t-steps]
        t_steps = waveform.size(-1)
        for i in range(waveform.size(0)):
            mute_size = int(
                self.random_uniform(0, end=int(t_steps * self.max_random_mute_portion))
            )
            mute_start = int(self.random_uniform(0, t_steps - mute_size))
            waveform[i, mute_start : mute_start + mute_size] = 0
        return waveform

    def cos_similarity(self, waveform, text):
        # waveform: [bs, t_steps]
        with torch.no_grad():
            self.embed_mode = "audio"
            audio_emb = self(waveform.cuda())
            self.embed_mode = "text"
            text_emb = self(text)
            similarity = F.cosine_similarity(audio_emb, text_emb, dim=2)
            return similarity.squeeze()

    def forward(self, batch, key=None):

        # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
        if self.embed_mode == "audio":
            audio_dict_list = []
            assert (
                self.sampling_rate == 16000
            ), "We only support 16000 sampling rate"
            # batch: [bs, 1, t-samples]
            batch = torchaudio.functional.resample(
                batch, orig_freq=self.sampling_rate, new_freq=48000
            )
            
            for waveform in self.batch_to_list(batch):
                audio_dict = {}
                audio_dict = get_audio_features(
                    audio_dict,
                    waveform.squeeze(),
                    480000,
                    data_truncating="fusion",
                    data_filling="repeatpad",
                    audio_cfg=self.model_cfg["audio_cfg"],
                    dtype=self.get_dtype(),
                )
                audio_dict_list.append(audio_dict)
            # [bs, 768]
            embed = self.model.get_audio_embedding(audio_dict_list)

        embed = embed.unsqueeze(1)

        # [bs, 1, 768]
        return embed