File size: 6,631 Bytes
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as tvtrans

from einops import rearrange

import pytorch_lightning as pl

from . import get_model
from ..cfg_helper import model_cfg_bank
from ..common.utils import regularize_image, regularize_video, remove_duplicate_word

import warnings
warnings.filterwarnings("ignore")


class model_module(pl.LightningModule):
    def __init__(self, model='codi', load_weights=True, data_dir='pretrained', pth=["CoDi_encoders.pth"], fp16=False):
        super().__init__()
        # import torch
        # device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        cfgm = model_cfg_bank()(model)
        net = get_model()(cfgm)
        if fp16:
            net = net.half()
        if load_weights:
            for path in pth:
                net.load_state_dict(torch.load(os.path.join(data_dir, path), map_location='cpu'), strict=False)
            print('Load pretrained weight from {}'.format(pth))

        self.net = net
        
        from core.models.ddim.ddim_vd import DDIMSampler_VD
        self.sampler = DDIMSampler_VD(net)

    def decode(self, z, xtype):
        # import torch
        # device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        device = z.device
        net = self.net
        z = z.to(device)
        if xtype == 'image':
            x = net.autokl_decode(z)
            x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0)
            # x = [tvtrans.ToPILImage()(xi) for xi in x]
            return x
        
        elif xtype == 'video':
            num_frames = z.shape[2]
            z = rearrange(z, 'b c f h w -> (b f) c h w')
            x = net.autokl_decode(z) 
            x = rearrange(x, '(b f) c h w -> b f c h w', f=num_frames)
            
            x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0)
            video_list = []
            for video in x:
                video_list.append([tvtrans.ToPILImage()(xi) for xi in video])
            return video_list

        elif xtype == 'text':
            prompt_temperature = 1.0
            prompt_merge_same_adj_word = True
            x = net.optimus_decode(z, temperature=prompt_temperature)
            """
            if prompt_merge_same_adj_word:
                xnew = []
                for xi in x:
                    xi_split = xi.split()
                    xinew = []
                    for idxi, wi in enumerate(xi_split):
                        if idxi!=0 and wi==xi_split[idxi-1]:
                            continue
                        xinew.append(wi)
                    xnew.append(remove_duplicate_word(' '.join(xinew)))
                x = xnew
                """
            return x
        
        elif xtype == 'audio':
            x = net.audioldm_decode(z)
            x = net.mel_spectrogram_to_waveform(x)
            return x

    def forward(self, xtype=[], condition=[], condition_types=[], n_samples=1, mix_weight={'video': 1, 'audio': 1, 'text': 1, 'image': 1}, image_size=256, ddim_steps=50, scale=7.5, num_frames=8):
        # import torch
        # device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        device = self.device
        net = self.net
        sampler = self.sampler
        ddim_eta = 0.0

        conditioning = []
        assert len(set(condition_types)) == len(condition_types), "we don't support condition with same modalities yet."
        assert len(condition) == len(condition_types)
        
        for i, condition_type in enumerate(condition_types):
            if condition_type == 'image':
                print(condition[i].shape)
                ctemp1 = regularize_image(condition[i]).squeeze().to(device)
                print(ctemp1.shape)
                ctemp1 = ctemp1[None].repeat(n_samples, 1, 1, 1)
                cim = net.clip_encode_vision(ctemp1).to(device)
                uim = None
                if scale != 1.0:
                    dummy = torch.zeros_like(ctemp1).to(device)
                    uim = net.clip_encode_vision(dummy).to(device)
                conditioning.append(torch.cat([uim, cim]))
                
            elif condition_type == 'video':
                ctemp1 = regularize_video(condition[i]).to(device)
                ctemp1 = ctemp1[None].repeat(n_samples, 1, 1, 1, 1)
                cim = net.clip_encode_vision(ctemp1).to(device)
                uim = None
                if scale != 1.0:
                    dummy = torch.zeros_like(ctemp1).to(device)
                    uim = net.clip_encode_vision(dummy).to(device)
                conditioning.append(torch.cat([uim, cim]))
                
            elif condition_type == 'audio':
                ctemp = condition[i][None].repeat(n_samples, 1, 1)
                cad = net.clap_encode_audio(ctemp)
                uad = None
                if scale != 1.0:
                    dummy = torch.zeros_like(ctemp)
                    uad = net.clap_encode_audio(dummy)  
                conditioning.append(torch.cat([uad, cad]))
                
            elif condition_type == 'text':
                ctx = net.clip_encode_text(n_samples * [condition[i]]).to(device)
                utx = None
                if scale != 1.0:
                    utx = net.clip_encode_text(n_samples * [""]).to(device)
                conditioning.append(torch.cat([utx, ctx]))
        
        shapes = []
        for xtype_i in xtype:
            if xtype_i == 'image':
                h, w = [image_size, image_size]
                shape = [n_samples, 4, h//8, w//8]
            elif xtype_i == 'video':
                h, w = [image_size, image_size]
                shape = [n_samples, 4, num_frames, h//8, w//8]
            elif xtype_i == 'text':
                n = 768
                shape = [n_samples, n]
            elif xtype_i == 'audio':
                h, w = [256, 16]
                shape = [n_samples, 8, h, w]
            else:
                raise
            shapes.append(shape)

        z, _ = sampler.sample(
            steps=ddim_steps,
            shape=shapes,
            condition=conditioning,
            unconditional_guidance_scale=scale,
            xtype=xtype, 
            condition_types=condition_types,
            eta=ddim_eta,
            verbose=False,
            mix_weight=mix_weight)

        out_all = []
        for i, xtype_i in enumerate(xtype):
            z[i] = z[i].to(device)
            x_i = self.decode(z[i], xtype_i)
            out_all.append(x_i)
        return out_all