|
from typing import Dict, List
|
|
import os
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
import numpy.random as npr
|
|
import copy
|
|
from functools import partial
|
|
from contextlib import contextmanager
|
|
|
|
from .common.get_model import get_model, register
|
|
from .sd import DDPM
|
|
|
|
version = '0'
|
|
symbol = 'thesis_model'
|
|
|
|
|
|
@register('thesis_model', version)
|
|
class CoDi(DDPM):
|
|
def __init__(self,
|
|
autokl_cfg=None,
|
|
optimus_cfg=None,
|
|
clip_cfg=None,
|
|
vision_scale_factor=0.1812,
|
|
text_scale_factor=4.3108,
|
|
audio_scale_factor=0.9228,
|
|
scale_by_std=False,
|
|
*args,
|
|
**kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
if autokl_cfg is not None:
|
|
self.autokl = get_model()(autokl_cfg)
|
|
|
|
if optimus_cfg is not None:
|
|
self.optimus = get_model()(optimus_cfg)
|
|
|
|
if clip_cfg is not None:
|
|
self.clip = get_model()(clip_cfg)
|
|
|
|
if not scale_by_std:
|
|
self.vision_scale_factor = vision_scale_factor
|
|
self.text_scale_factor = text_scale_factor
|
|
self.audio_scale_factor = audio_scale_factor
|
|
else:
|
|
self.register_buffer("text_scale_factor", torch.tensor(text_scale_factor))
|
|
self.register_buffer("audio_scale_factor", torch.tensor(audio_scale_factor))
|
|
self.register_buffer('vision_scale_factor', torch.tensor(vision_scale_factor))
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.parameters()).device
|
|
|
|
@torch.no_grad()
|
|
def autokl_encode(self, image):
|
|
encoder_posterior = self.autokl.encode(image)
|
|
z = encoder_posterior.sample().to(image.dtype)
|
|
return self.vision_scale_factor * z
|
|
|
|
@torch.no_grad()
|
|
def autokl_decode(self, z):
|
|
z = 1. / self.vision_scale_factor * z
|
|
return self.autokl.decode(z)
|
|
|
|
@torch.no_grad()
|
|
def optimus_encode(self, text):
|
|
if isinstance(text, List):
|
|
tokenizer = self.optimus.tokenizer_encoder
|
|
token = [tokenizer.tokenize(sentence.lower()) for sentence in text]
|
|
token_id = []
|
|
for tokeni in token:
|
|
token_sentence = [tokenizer._convert_token_to_id(i) for i in tokeni]
|
|
token_sentence = tokenizer.add_special_tokens_single_sentence(token_sentence)
|
|
token_id.append(torch.LongTensor(token_sentence))
|
|
token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0)[:, :512]
|
|
else:
|
|
token_id = text
|
|
z = self.optimus.encoder(token_id, attention_mask=(token_id > 0))[1]
|
|
z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1)
|
|
return z_mu.squeeze(1) * self.text_scale_factor
|
|
|
|
@torch.no_grad()
|
|
def optimus_decode(self, z, temperature=1.0):
|
|
z = 1.0 / self.text_scale_factor * z
|
|
return self.optimus.decode(z, temperature)
|
|
|
|
@torch.no_grad()
|
|
def clip_encode_text(self, text, encode_type='encode_text'):
|
|
swap_type = self.clip.encode_type
|
|
self.clip.encode_type = encode_type
|
|
embedding = self.clip(text, encode_type)
|
|
self.clip.encode_type = swap_type
|
|
return embedding
|
|
|
|
@torch.no_grad()
|
|
def clip_encode_vision(self, vision, encode_type='encode_vision'):
|
|
swap_type = self.clip.encode_type
|
|
self.clip.encode_type = encode_type
|
|
embedding = self.clip(vision, encode_type)
|
|
self.clip.encode_type = swap_type
|
|
return embedding
|
|
|
|
@torch.no_grad()
|
|
def clap_encode_audio(self, audio):
|
|
embedding = self.clap(audio)
|
|
return embedding
|
|
|
|
def forward(self, x=None, c=None, noise=None, xtype='frontal', ctype='text', u=None, return_algined_latents=False, env_enc=False):
|
|
if isinstance(x, list):
|
|
t = torch.randint(0, self.num_timesteps, (x[0].shape[0],), device=x[0].device).long()
|
|
else:
|
|
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
|
|
return self.p_losses(x, c, t, noise, xtype, ctype, u, return_algined_latents, env_enc)
|
|
|
|
def apply_model(self, x_noisy, t, cond, xtype='frontal', ctype='text', u=None, return_algined_latents=False, env_enc=False):
|
|
return self.model.diffusion_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents, env_enc=env_enc)
|
|
|
|
def get_pixel_loss(self, pred, target, mean=True):
|
|
if self.loss_type == 'l1':
|
|
loss = (target - pred).abs()
|
|
if mean:
|
|
loss = loss.mean()
|
|
elif self.loss_type == 'l2':
|
|
if mean:
|
|
loss = torch.nn.functional.mse_loss(target, pred)
|
|
else:
|
|
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
|
else:
|
|
raise NotImplementedError("unknown loss type '{loss_type}'")
|
|
loss = torch.nan_to_num(loss, nan=0.0, posinf=0.0, neginf=-0.0)
|
|
return loss
|
|
|
|
def get_text_loss(self, pred, target):
|
|
if self.loss_type == 'l1':
|
|
loss = (target - pred).abs()
|
|
elif self.loss_type == 'l2':
|
|
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
|
loss = torch.nan_to_num(loss, nan=0.0, posinf=0.0, neginf=0.0)
|
|
return loss
|
|
|
|
def p_losses(self, x_start, cond, t, noise=None, xtype='frontal', ctype='text', u=None,
|
|
return_algined_latents=False, env_enc=False):
|
|
if isinstance(x_start, list):
|
|
noise = [torch.randn_like(x_start_i) for x_start_i in x_start] if noise is None else noise
|
|
x_noisy = [self.q_sample(x_start=x_start_i, t=t, noise=noise_i) for x_start_i, noise_i in
|
|
zip(x_start, noise)]
|
|
if not env_enc:
|
|
model_output = self.apply_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents, env_enc)
|
|
else:
|
|
model_output, h_con = self.apply_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents, env_enc)
|
|
if return_algined_latents:
|
|
return model_output
|
|
|
|
loss_dict = {}
|
|
|
|
if self.parameterization == "x0":
|
|
target = x_start
|
|
elif self.parameterization == "eps":
|
|
target = noise
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
loss = 0.0
|
|
for model_output_i, target_i, xtype_i in zip(model_output, target, xtype):
|
|
if xtype_i == 'frontal':
|
|
loss_simple = self.get_pixel_loss(model_output_i, target_i, mean=False).mean([1, 2, 3])
|
|
elif xtype_i == 'text':
|
|
loss_simple = self.get_text_loss(model_output_i, target_i).mean([1])
|
|
elif xtype_i == 'lateral':
|
|
loss_simple = self.get_pixel_loss(model_output_i, target_i, mean=False).mean([1, 2, 3])
|
|
loss += loss_simple.mean()
|
|
|
|
|
|
|
|
|
|
|
|
if h_con is not None:
|
|
def similarity(z_a, z_b):
|
|
return F.cosine_similarity(z_a, z_b)
|
|
|
|
z_a, z_b = h_con
|
|
|
|
z_a = z_a / z_a.norm(dim=-1, keepdim=True)
|
|
z_b = z_b / z_b.norm(dim=-1, keepdim=True)
|
|
|
|
logits_a = z_a.squeeze() @ z_b.squeeze().t()
|
|
logits_b = z_a.squeeze() @ z_b.squeeze().t()
|
|
|
|
labels = torch.arange(len(z_a)).to(z_a.device)
|
|
|
|
loss_a = F.cross_entropy(logits_a, labels)
|
|
loss_b = F.cross_entropy(logits_b, labels)
|
|
|
|
loss_con = (loss_a + loss_b) / 2
|
|
loss += loss_con
|
|
return loss / len(xtype)
|
|
|
|
else:
|
|
noise = torch.randn_like(x_start) if noise is None else noise
|
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
|
model_output = self.apply_model(x_noisy, t, cond, xtype, ctype)
|
|
|
|
loss_dict = {}
|
|
|
|
if self.parameterization == "x0":
|
|
target = x_start
|
|
elif self.parameterization == "eps":
|
|
target = noise
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
if xtype == 'frontal':
|
|
loss_simple = self.get_pixel_loss(model_output, target, mean=False).mean([1, 2, 3])
|
|
elif xtype == 'text':
|
|
loss_simple = self.get_text_loss(model_output, target).mean([1])
|
|
elif xtype == 'lateral':
|
|
loss_simple = self.get_pixel_loss(model_output, target, mean=False).mean([1, 2, 3])
|
|
loss = loss_simple.mean()
|
|
return loss
|
|
|