|
import torch |
|
import torch.optim as optim |
|
import numpy as np |
|
import copy |
|
from ... import sync |
|
from ...cfg_holder import cfg_unique_holder as cfguh |
|
|
|
|
|
def singleton(class_): |
|
instances = {} |
|
|
|
def getinstance(*args, **kwargs): |
|
if class_ not in instances: |
|
instances[class_] = class_(*args, **kwargs) |
|
return instances[class_] |
|
return getinstance |
|
|
|
|
|
@singleton |
|
class get_scheduler(object): |
|
def __init__(self): |
|
self.lr_scheduler = {} |
|
|
|
def register(self, lrsf, name): |
|
self.lr_scheduler[name] = lrsf |
|
|
|
def __call__(self, cfg): |
|
if cfg is None: |
|
return None |
|
if isinstance(cfg, list): |
|
schedulers = [] |
|
for ci in cfg: |
|
t = ci.type |
|
schedulers.append( |
|
self.lr_scheduler[t](**ci.args)) |
|
if len(schedulers) == 0: |
|
raise ValueError |
|
else: |
|
return compose_scheduler(schedulers) |
|
t = cfg.type |
|
return self.lr_scheduler[t](**cfg.args) |
|
|
|
|
|
def register(name): |
|
def wrapper(class_): |
|
get_scheduler().register(class_, name) |
|
return class_ |
|
return wrapper |
|
|
|
|
|
class template_scheduler(object): |
|
def __init__(self, step): |
|
self.step = step |
|
|
|
def __getitem__(self, idx): |
|
raise ValueError |
|
|
|
def set_lr(self, optim, new_lr, pg_lrscale=None): |
|
""" |
|
Set Each parameter_groups in optim with new_lr |
|
New_lr can be find according to the idx. |
|
pg_lrscale tells how to scale each pg. |
|
""" |
|
|
|
pg_lrscale = copy.deepcopy(pg_lrscale) |
|
for pg in optim.param_groups: |
|
if pg_lrscale is None: |
|
pg['lr'] = new_lr |
|
else: |
|
pg['lr'] = new_lr * pg_lrscale.pop(pg['name']) |
|
assert (pg_lrscale is None) or (len(pg_lrscale)==0), \ |
|
"pg_lrscale doesn't match pg" |
|
|
|
@register('constant') |
|
class constant_scheduler(template_scheduler): |
|
def __init__(self, lr, step): |
|
super().__init__(step) |
|
self.lr = lr |
|
|
|
def __getitem__(self, idx): |
|
if idx >= self.step: |
|
raise ValueError |
|
return self.lr |
|
|
|
|
|
@register('poly') |
|
class poly_scheduler(template_scheduler): |
|
def __init__(self, start_lr, end_lr, power, step): |
|
super().__init__(step) |
|
self.start_lr = start_lr |
|
self.end_lr = end_lr |
|
self.power = power |
|
|
|
def __getitem__(self, idx): |
|
if idx >= self.step: |
|
raise ValueError |
|
a, b = self.start_lr, self.end_lr |
|
p, n = self.power, self.step |
|
return b + (a-b)*((1-idx/n)**p) |
|
|
|
|
|
@register('linear') |
|
class linear_scheduler(template_scheduler): |
|
def __init__(self, start_lr, end_lr, step): |
|
super().__init__(step) |
|
self.start_lr = start_lr |
|
self.end_lr = end_lr |
|
|
|
def __getitem__(self, idx): |
|
if idx >= self.step: |
|
raise ValueError |
|
a, b, n = self.start_lr, self.end_lr, self.step |
|
return b + (a-b)*(1-idx/n) |
|
|
|
|
|
@register('multistage') |
|
class constant_scheduler(template_scheduler): |
|
def __init__(self, start_lr, milestones, gamma, step): |
|
super().__init__(step) |
|
self.start_lr = start_lr |
|
m = [0] + milestones + [step] |
|
lr_iter = start_lr |
|
self.lr = [] |
|
for ms, me in zip(m[0:-1], m[1:]): |
|
for _ in range(ms, me): |
|
self.lr.append(lr_iter) |
|
lr_iter *= gamma |
|
|
|
def __getitem__(self, idx): |
|
if idx >= self.step: |
|
raise ValueError |
|
return self.lr[idx] |
|
|
|
|
|
class compose_scheduler(template_scheduler): |
|
def __init__(self, schedulers): |
|
self.schedulers = schedulers |
|
self.step = [si.step for si in schedulers] |
|
self.step_milestone = [] |
|
acc = 0 |
|
for i in self.step: |
|
acc += i |
|
self.step_milestone.append(acc) |
|
self.step = sum(self.step) |
|
|
|
def __getitem__(self, idx): |
|
if idx >= self.step: |
|
raise ValueError |
|
ms = self.step_milestone |
|
for idx, (mi, mj) in enumerate(zip(ms[:-1], ms[1:])): |
|
if mi <= idx < mj: |
|
return self.schedulers[idx-mi] |
|
raise ValueError |
|
|
|
|
|
|
|
|
|
|
|
|
|
class LambdaWarmUpCosineScheduler(template_scheduler): |
|
""" |
|
note: use with a base_lr of 1.0 |
|
""" |
|
def __init__(self, |
|
base_lr, |
|
warm_up_steps, |
|
lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0): |
|
cfgt = cfguh().cfg.train |
|
bs = cfgt.batch_size |
|
if 'gradacc_every' not in cfgt: |
|
print('Warning, gradacc_every is not found in xml, use 1 as default.') |
|
acc = cfgt.get('gradacc_every', 1) |
|
self.lr_multi = base_lr * bs * acc |
|
self.lr_warm_up_steps = warm_up_steps |
|
self.lr_start = lr_start |
|
self.lr_min = lr_min |
|
self.lr_max = lr_max |
|
self.lr_max_decay_steps = max_decay_steps |
|
self.last_lr = 0. |
|
self.verbosity_interval = verbosity_interval |
|
|
|
def schedule(self, n): |
|
if self.verbosity_interval > 0: |
|
if n % self.verbosity_interval == 0: |
|
print(f"current step: {n}, recent lr-multiplier: {self.last_lr}") |
|
if n < self.lr_warm_up_steps: |
|
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start |
|
self.last_lr = lr |
|
return lr |
|
else: |
|
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps) |
|
t = min(t, 1.0) |
|
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * ( |
|
1 + np.cos(t * np.pi)) |
|
self.last_lr = lr |
|
return lr |
|
|
|
def __getitem__(self, idx): |
|
return self.schedule(idx) * self.lr_multi |
|
|
|
|
|
class LambdaWarmUpCosineScheduler2(template_scheduler): |
|
""" |
|
supports repeated iterations, configurable via lists |
|
note: use with a base_lr of 1.0. |
|
""" |
|
def __init__(self, |
|
base_lr, |
|
warm_up_steps, |
|
f_min, f_max, f_start, cycle_lengths, verbosity_interval=0): |
|
cfgt = cfguh().cfg.train |
|
|
|
|
|
|
|
|
|
|
|
self.lr_multi = base_lr |
|
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths) |
|
self.lr_warm_up_steps = warm_up_steps |
|
self.f_start = f_start |
|
self.f_min = f_min |
|
self.f_max = f_max |
|
self.cycle_lengths = cycle_lengths |
|
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths)) |
|
self.last_f = 0. |
|
self.verbosity_interval = verbosity_interval |
|
|
|
def find_in_interval(self, n): |
|
interval = 0 |
|
for cl in self.cum_cycles[1:]: |
|
if n <= cl: |
|
return interval |
|
interval += 1 |
|
|
|
def schedule(self, n): |
|
cycle = self.find_in_interval(n) |
|
n = n - self.cum_cycles[cycle] |
|
if self.verbosity_interval > 0: |
|
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, " |
|
f"current cycle {cycle}") |
|
if n < self.lr_warm_up_steps[cycle]: |
|
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle] |
|
self.last_f = f |
|
return f |
|
else: |
|
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle]) |
|
t = min(t, 1.0) |
|
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * ( |
|
1 + np.cos(t * np.pi)) |
|
self.last_f = f |
|
return f |
|
|
|
def __getitem__(self, idx): |
|
return self.schedule(idx) * self.lr_multi |
|
|
|
|
|
@register('stable_diffusion_linear') |
|
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2): |
|
def schedule(self, n): |
|
cycle = self.find_in_interval(n) |
|
n = n - self.cum_cycles[cycle] |
|
if self.verbosity_interval > 0: |
|
if n % self.verbosity_interval == 0: |
|
print(f"current step: {n}, recent lr-multiplier: {self.last_f}, " |
|
f"current cycle {cycle}") |
|
if n < self.lr_warm_up_steps[cycle]: |
|
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle] |
|
self.last_f = f |
|
return f |
|
else: |
|
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle]) |
|
self.last_f = f |
|
return f |