MedCoDi-M / core /models /codi_2.py
dmolino's picture
Upload 276 files
168a510 verified
from typing import Dict, List
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
import copy
from functools import partial
from contextlib import contextmanager
from .common.get_model import get_model, register
from .sd import DDPM
version = '0'
symbol = 'thesis_model'
@register('thesis_model', version)
class CoDi(DDPM):
def __init__(self,
autokl_cfg=None,
optimus_cfg=None,
clip_cfg=None,
vision_scale_factor=0.1812,
text_scale_factor=4.3108,
audio_scale_factor=0.9228,
scale_by_std=False,
*args,
**kwargs):
super().__init__(*args, **kwargs)
if autokl_cfg is not None:
self.autokl = get_model()(autokl_cfg)
if optimus_cfg is not None:
self.optimus = get_model()(optimus_cfg)
if clip_cfg is not None:
self.clip = get_model()(clip_cfg)
if not scale_by_std:
self.vision_scale_factor = vision_scale_factor
self.text_scale_factor = text_scale_factor
self.audio_scale_factor = audio_scale_factor
else:
self.register_buffer("text_scale_factor", torch.tensor(text_scale_factor))
self.register_buffer("audio_scale_factor", torch.tensor(audio_scale_factor))
self.register_buffer('vision_scale_factor', torch.tensor(vision_scale_factor))
@property
def device(self):
return next(self.parameters()).device
@torch.no_grad()
def autokl_encode(self, image):
encoder_posterior = self.autokl.encode(image)
z = encoder_posterior.sample().to(image.dtype)
return self.vision_scale_factor * z
@torch.no_grad()
def autokl_decode(self, z):
z = 1. / self.vision_scale_factor * z
return self.autokl.decode(z)
@torch.no_grad()
def optimus_encode(self, text):
if isinstance(text, List):
tokenizer = self.optimus.tokenizer_encoder
token = [tokenizer.tokenize(sentence.lower()) for sentence in text]
token_id = []
for tokeni in token:
token_sentence = [tokenizer._convert_token_to_id(i) for i in tokeni]
token_sentence = tokenizer.add_special_tokens_single_sentence(token_sentence)
token_id.append(torch.LongTensor(token_sentence))
token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0)[:, :512]
else:
token_id = text
token_id = token_id.to(self.device)
z = self.optimus.encoder(token_id, attention_mask=(token_id > 0))[1]
z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1)
return z_mu.squeeze(1) * self.text_scale_factor
@torch.no_grad()
def optimus_decode(self, z, temperature=1.0, max_length=30):
z = 1.0 / self.text_scale_factor * z
z = z.to(self.device)
return self.optimus.decode(z, temperature, max_length=max_length)
@torch.no_grad()
def clip_encode_text(self, text, encode_type='encode_text'):
swap_type = self.clip.encode_type
self.clip.encode_type = encode_type
embedding = self.clip(text, encode_type)
self.clip.encode_type = swap_type
return embedding
@torch.no_grad()
def clip_encode_vision(self, vision, encode_type='encode_vision'):
swap_type = self.clip.encode_type
self.clip.encode_type = encode_type
embedding = self.clip(vision, encode_type)
self.clip.encode_type = swap_type
return embedding
@torch.no_grad()
def clap_encode_audio(self, audio):
embedding = self.clap(audio)
return embedding
def forward(self, x=None, c=None, noise=None, xtype='frontal', ctype='text', u=None, return_algined_latents=False, env_enc=False):
if isinstance(x, list):
t = torch.randint(0, self.num_timesteps, (x[0].shape[0],), device=x[0].device).long()
else:
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
return self.p_losses(x, c, t, noise, xtype, ctype, u, return_algined_latents, env_enc)
def apply_model(self, x_noisy, t, cond, xtype='frontal', ctype='text', u=None, return_algined_latents=False, env_enc=False):
return self.model.diffusion_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents, env_enc=env_enc)
def get_pixel_loss(self, pred, target, mean=True):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
loss = torch.nan_to_num(loss, nan=0.0, posinf=0.0, neginf=-0.0)
return loss
def get_text_loss(self, pred, target):
if self.loss_type == 'l1':
loss = (target - pred).abs()
elif self.loss_type == 'l2':
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
loss = torch.nan_to_num(loss, nan=0.0, posinf=0.0, neginf=0.0)
return loss
def p_losses(self, x_start, cond, t, noise=None, xtype='frontal', ctype='text', u=None,
return_algined_latents=False, env_enc=False):
if isinstance(x_start, list):
noise = [torch.randn_like(x_start_i) for x_start_i in x_start] if noise is None else noise
x_noisy = [self.q_sample(x_start=x_start_i, t=t, noise=noise_i) for x_start_i, noise_i in
zip(x_start, noise)]
if not env_enc:
model_output = self.apply_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents, env_enc)
else:
model_output, h_con = self.apply_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents, env_enc)
if return_algined_latents:
return model_output
loss_dict = {}
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
loss = 0.0
for model_output_i, target_i, xtype_i in zip(model_output, target, xtype):
if xtype_i == 'frontal':
loss_simple = self.get_pixel_loss(model_output_i, target_i, mean=False).mean([1, 2, 3])
elif xtype_i == 'text':
loss_simple = self.get_text_loss(model_output_i, target_i).mean([1])
elif xtype_i == 'lateral':
loss_simple = self.get_pixel_loss(model_output_i, target_i, mean=False).mean([1, 2, 3])
loss += loss_simple.mean()
# Controlliamo se il modello ha restituito anche h_con
# In tal caso, abbiamo le rappresentazioni latenti delle due modalità
# estratte dagli environmental encoder, essendo due tensori di dimensione batch_sizex1x1280
# possiamo utilizzarli per calcolare anche un termine di contrastive loss (crossentropy come in CLIP)
if h_con is not None:
def similarity(z_a, z_b):
return F.cosine_similarity(z_a, z_b)
z_a, z_b = h_con
z_a = z_a / z_a.norm(dim=-1, keepdim=True)
z_b = z_b / z_b.norm(dim=-1, keepdim=True)
logits_a = z_a.squeeze() @ z_b.squeeze().t()
logits_b = z_a.squeeze() @ z_b.squeeze().t()
labels = torch.arange(len(z_a)).to(z_a.device)
loss_a = F.cross_entropy(logits_a, labels)
loss_b = F.cross_entropy(logits_b, labels)
loss_con = (loss_a + loss_b) / 2
loss += loss_con
return loss / len(xtype)
else:
noise = torch.randn_like(x_start) if noise is None else noise
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond, xtype, ctype)
loss_dict = {}
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
if xtype == 'frontal':
loss_simple = self.get_pixel_loss(model_output, target, mean=False).mean([1, 2, 3])
elif xtype == 'text':
loss_simple = self.get_text_loss(model_output, target).mean([1])
elif xtype == 'lateral':
loss_simple = self.get_pixel_loss(model_output, target, mean=False).mean([1, 2, 3])
loss = loss_simple.mean()
return loss