|
from typing import List |
|
import os |
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from functools import partial |
|
from core.models.common.get_model import register |
|
from einops import rearrange |
|
|
|
from transformers import CLIPTokenizer, CLIPTextModel |
|
from .clip_modules import CLIPProcessor, CLIPModel, CLIPTokenizer, CLIPConfig |
|
|
|
|
|
version = '0' |
|
symbol = 'clip' |
|
|
|
|
|
class AbstractEncoder(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def encode(self, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
|
|
@register('clip_text_frozen', version) |
|
class FrozenCLIPTextEmbedder(AbstractEncoder): |
|
"""Uses the CLIP transformer encoder for text (from huggingface)""" |
|
|
|
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): |
|
super().__init__() |
|
self.tokenizer = CLIPTokenizer.from_pretrained(version) |
|
self.transformer = CLIPTextModel.from_pretrained(version) |
|
self.device = device |
|
self.max_length = max_length |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, |
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
outputs = self.transformer(input_ids=tokens) |
|
z = outputs.last_hidden_state |
|
return z |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
@register('clip_frozen', version) |
|
class FrozenCLIP(AbstractEncoder): |
|
def __init__(self, |
|
version="openai/clip-vit-large-patch14", |
|
max_length=77, |
|
encode_type='encode_text', |
|
fp16=False, |
|
data_dir='.'): |
|
super().__init__() |
|
self.tokenizer = CLIPTokenizer.from_pretrained(version) |
|
self.processor = CLIPProcessor.from_pretrained(version) |
|
config = CLIPConfig.from_pretrained(version) |
|
self.model = CLIPModel(config, add_temporal_attention=True) |
|
self.max_length = max_length |
|
self.encode_type = encode_type |
|
self.fp16 = fp16 |
|
|
|
@property |
|
def dtype(self): |
|
return torch.float32 |
|
|
|
@property |
|
def device(self): |
|
return self.model.text_projection.weight.device |
|
|
|
def get_device(self): |
|
|
|
return self.model.text_projection.weight.device |
|
|
|
def freeze(self, modules): |
|
for module in modules: |
|
for param in module.parameters(): |
|
param.requires_grad = False |
|
|
|
def unfreeze(self, modules): |
|
for module in modules: |
|
for param in module.parameters(): |
|
param.requires_grad = True |
|
|
|
def encode_text_pooled(self, text): |
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, |
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") |
|
tokens = batch_encoding["input_ids"].to(self.get_device()) |
|
outputs = self.model.get_text_features(input_ids=tokens) |
|
return outputs |
|
|
|
def encode_vision_pooled(self, images): |
|
inputs = self.processor(images=images, return_tensors="pt") |
|
pixels = inputs['pixel_values'].half() if self.fp16 else inputs['pixel_values'] |
|
pixels = pixels.to(self.get_device()) |
|
return self.model.get_image_features(pixel_values=pixels) |
|
|
|
def encode_text_noproj(self, text): |
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, |
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") |
|
tokens = batch_encoding["input_ids"].to(self.get_device()) |
|
if self.dtype == torch.half: |
|
tokens = tokens.short() |
|
outputs = self.model.text_model(input_ids=tokens) |
|
return outputs.last_hidden_state |
|
|
|
def encode_vision_noproj(self, vision_inputs): |
|
|
|
vision_inputs = vision_inputs.to('cpu').numpy() |
|
|
|
if vision_inputs.ndim == 5: |
|
num_frames = vision_inputs.shape[2] |
|
vision_inputs = rearrange(vision_inputs, 'b c f h w -> (b f) h w c') |
|
else: |
|
num_frames = 1 |
|
vision_inputs = rearrange(vision_inputs, 'b c h w -> b h w c') |
|
|
|
vision_inputs = [vi for vi in vision_inputs] |
|
inputs = self.processor(images=vision_inputs, return_tensors="pt") |
|
|
|
pixels = inputs['pixel_values'].to(self.dtype).to(self.device) |
|
|
|
if num_frames > 1: |
|
pixels = rearrange(pixels, '(b f) h w c -> b f h w c', f=num_frames) |
|
outputs = self.model.vision_model(pixel_values=pixels) |
|
return outputs |
|
|
|
def encode_text(self, text): |
|
if isinstance(text, List): |
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, |
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") |
|
tokens = batch_encoding["input_ids"].to(self.get_device()) |
|
else: |
|
tokens = text |
|
outputs = self.model.text_model(input_ids=tokens) |
|
z_pooled = outputs.pooler_output |
|
z_pooled = self.model.text_projection(z_pooled) |
|
z_pooled = z_pooled / torch.norm(z_pooled, dim=-1, keepdim=True) |
|
return z_pooled.unsqueeze(1) |
|
|
|
def encode_vision(self, images): |
|
z = self.encode_vision_noproj(images) |
|
z_pooled = z.pooler_output |
|
z_pooled = self.model.visual_projection(z_pooled) |
|
z_pooled = z_pooled / torch.norm(z_pooled, dim=-1, keepdim=True) |
|
return z_pooled.unsqueeze(1) |
|
|
|
def encode(self, *args, **kwargs): |
|
return getattr(self, self.encode_type)(*args, **kwargs) |
|
|
|
def forward(self, input, encode_type): |
|
if encode_type == 'encode_text': |
|
return self.encode_text(input) |
|
elif encode_type == 'encode_vision': |
|
|
|
if input.shape[1] == 1: |
|
input = torch.cat([input, input, input], dim=1) |
|
return self.encode_vision(input) |
|
|
|
|